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ABSTRACT

The experimental determination of the buffeting on a launch vehicle is
analyzed. The statistical prediction of the grcss vehicle loadings and dis-
placements from wind tunnel data obtained from rigid models is considered.
The dynamic response of the vehicle in bending and in sloshing is described.
Design of a wind tunnel test that will determine the required data is outlined,
and instrumentation requirements are discussed. Data reduction techniques
are described that generate the power spectral densities of the aerodynamic
forcing. The scaling rules are included. Saturn I test data are reduced and
the results are compared with the results of an aeroelastic test and a flight
test. The main part of the report is presented in Volume I. The classified
portion is contained in Volume II.
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FOREWORD

This report was prepared by the Aero-Space Mechanics Branch, Structures
& Mechanics Engineering Department, Huntsville Space Operations, Chrysler Cor-
poration, The work was authorized by task assignment R-AERO-SAT-I/IB-1-65,
work assignment AU-4, Contract NAS8-4016, issued by the Unsteady Aerodynamics
Branch, Aerodynamics Division, Acro-Astrodynamics Laboratory, Marshall Space
Flight Center. The purpose of this study is to establish the data reduction
procedures for wind tunnel buffeting tests conducted with rigid models.
Saturn I data are reduced and compared with the results of an aerocelastic test
and with flight test data, Suggestions are made concerning the design of
rigid model tests.
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NOMENCLATURE

Damping coefficient of a bending mode, %:ssii;

a, ft 1bs sec

Damping coefficient of sloshing liqui radian

Constant in Eq. 59, usually set equal to /2

Static pitching moment derivative, fﬁa%gﬁ

ft lbs

Spring constant in representation of sloshing mass, -
radian

Linear density of vehicle, E%Egﬁ
t

X-coordinate
Dynamic pressure, 1bs

£t2
Radius of vehicle or model divided by its length
X-coordinate
Real time during flight, sec

X-coordinate

Longitudinal coordinate of the vehicle or model divided by its
length

Radial coordinate of the vehicle or model divided by its length
X-coordinate

Real component of a complex function

Imaginary component of a complex function

Static pitching moment coefficient, positive clockwise

Local normal force coefficient based on local radius

Local pressure coefficient

Aerodynamic buffeting moment coefficient, positive clockwise

ix
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IC,, ID,

Bo(x,x 1, w)
B ()
gM(x »X T,w)

1bs
ft2

Area moment of inertia of vehicle, ft4

Elastic modulus of vehicle,

Integrated power spectral density of the local normal force
coefficients, sec ft

Moment of inertia of the vehicle about the center of gravity
excluding the mass of the sloshing liquid of the nt! mode
(Eq. 94), slug ft2

Moment of inertia of the nth mode about the vehicle center of
gravity (Eq. 93), slug f£e2

Integrals defined in Appendix M

Length of vehicle, ft

Vehicle moment caused by bending, ft lbs

1bs

Local normal force, T

Time, sec
. ft
Velocity, Sec
Impedance of nth mode (Eq. 26)
Bending mode of vehicle (Eq. 5)

Angular pitching deflection of the vehicle caused by buffeting,
positive clockwise

Time dependent coefficient in series that expresses bending dis-
placements in terms of the bending modes

Angular deflection of liquid with respect to vehicle center of
gravity caused by sloshing, radians

Damping ratio

Coefficient in the series expressing the local normal force
coefficients in terms of the bending modes

Buffeting moment about the vehicle center of gravity, ft lbs
Power spectral density of y, sec
Power spectral density of C, sec

Power spectral density of M, ft2 1bs2 sec
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Superscripts

Power

Power

Power

Power

Power

Power

spectral density
spectral density
gpectral density
spectral density
spectral density

spectral density

of Cy, sec
of Bp, radian? sec
of 7, sec

of On, radian?

sec
.2
of (8n-pn), radian® sec

of (Bn-B), radian? sec

Power spectral density of K, fe2 1bs? sec

Real frequency during vehicle flight,

Interval of frequency,

radians
sec

radians

sec

Derivative of parameter with respect to time

i Second derivative of parameter with respect to time

/ Derivative of parameter with respect to x

! Denotes another variable

Denotes Fourier transform

~ Denotes reduced time base

* Denotes real time during wind tunnel test
Subscripts

h Homogeneous solution

i Denotes particular.mode

j Denotes particular mode

£ Denotes
n Denotes

u Denotes

particular mode

particular mode

particular mode

xi



w Denotes particular mode

< > Mean value
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SECTION I. INTRODUCTION

This report is a study of the methods using wind tunnel data from rigid
models to predict the gross vehicle loads caused by buffeting. Buffeting
occurs on launch vehicles which have configurations that are not aerodynami-
cally clean. The buffeting can be caused by oscillating shock waves, unstable
flow separation, or vortices generated by these bodies. The problems caused
by buffeting can be divided into two categories. One consists of local prob-
lems, which include local structural damage to the vehicle and discomfort or
injury to passengers. The other category consists of the gross vehicle prob-
lems, which include the structural damage and control interference caused by
the structural bending of the entire vehicle and the rigid body and sloshing
dynamics of the vehicle,

The analysis presented in this study is confined to gross vehicle consid-
erations. The magnitude of the gross unsteady aerodynamic forces acting on
the vehicle is usually small compared to other vehicle loadings. However,
the vehicle has various resonant characteristics, and the periodic nature of
the buffeting can cause large bending and sloshing deflections if the buffeting
acts near the resonant frequencies, The control system can be excited by these
structural oscillations.

The methods used in analyzing wind tunnel buffeting data which will allow
the effects of buffeting on the vehicle to be calculated are reviewed and
extended here. These methods will allow statistical calculations to be made
of the vehicle stresses and control deflections that are generated by the res-
ponse of the vehicle to the buffeting loads. The techniques are restricted
to the analysis of data taken with rigid models and no attempt is made to
compensate for the effects that the vehicle deflections have on the flow field.
The response of the control system to the buffeting is not included in the
analysis, but it can be integrated into this work at a later date.

In analyzing the bending dynamics, the vehicle is considered to be a
nonuniform slosh free beam. (The multitank configuration of the first stage
of the Saturn I is assumed to behave as a single tank.) The power spectral
densities of the transverse displacements and bending moments are determined
in terms of the dynamic characteristics of the vehicle and in terms of the
integrated power spectral densities of the local normal force coefficients.
This allows the mean square of the transverse displacements and the mean square
of the bending moments at any vehicle station to be evaluated. By extending
the analysis, the effects of bending on the control system may also be
determined.

In analyzing the rigid body and sloshing dynamics of the vehicle, it is
assumed that the vehicle consists of a series of springs, dashpots, and masses
attached to a rigid beam. The power spectral densities of the moment coeffi-
cient about the center of gravity will allow the mean square of the
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displacement of the vehicle and the sloshing liquids to be determined. The
stresses caused by the sloshing can also be determined.

There are several restrictions on the methods outlined in this report.
It is necessary to follow the derivation of these methods closely to understand
the implications of some of these restrictions. For the sake of completeness
all of the restrictions are listed.

In determining the bending dynamics, the vehicle must be lightly
damped and its behavior must be described by Eq. (1).

The dynamic modes (both bending and sloshing) must not interact with
one another.

The control system is not considered in the analysis.

It is assumed that the bending deflections of the vehicle have no
effect on the flow field about the vehicle. It is also assumed that
small angles of attack have no effect on the buffeting.

The bending modes must be determined before the wind tunnel data can
be reduced.

Buffeting must be stochastic.

The noise level of the tunnel must be low enough so that signals fed
into the measuring system will be negligible.

The rigid model should have no dynamic characteristics that will
cause erroneous measurements. If the model does possess some reson-
ant characteristics that may be excited by the flow, signals in the
resonant frequency ranges should be filtered.

All measurements must be referenced to the same time base.

The instrumentation generating cross power spectral densities must
determine real and imaginary components.
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II. GENERAL ANALYSIS OF BENDING DYNAMICS

The equation describing the bending dynamics of a slosh-free vehicle is
the same as the one describing the dynamics of a non-uniform beam (Ref. 1),

v 4
ﬁ+mW%§/\=§ M

The coordinate system is shown in figure 1. The local normal force is
given by

N, = qL r(x) Cy(x,t) (2)

and the local normal force coefficient Cy(x,t), based on the local radius,
is given by

2
Cy(x,t) = j; i Cpp, cos 6 dé (3

The local normal force coefficient is a function of Mach number and Reynolds
number.

For a lightly damped system, the homogeneous representation of Eq. (1)
can be approximated by
Y

.. . /EI 2
+ (= =0 4
w + (2 v*) @)
whose solution is then
Yy = E an(x) 7p,(t) (35)
where n
iwpt
Fhm(t) = B (6)
and
1
k/ﬁ m Q “(x) dx =1 (7
0
Substituting Eq. (5) and (6) into Eq. (4) yields
Lot - .
(-m) z on(x) wyZ e m +§<§7I; a’{(x)) 10t _ o (8)
T n
Thus
o) = =5 (B o)
n{¥ mwnz 1% On(x) €]
3
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Let the solution of Eq. (1) be written

y = ZYn (10)
n
where
= o (x) 7n(t) (11)
This is pe rmissible, since a lightly damped system has essentially the same
mode shapes as if it were free of damping. Substituting Eq. (10) and (11)
into Eq. (1) yields

Z (x) 7n(t) + bmi%(x) Tn(t) +Z<7; Oln(x)> Ya(t)
n

= qr(x) Cy(x,t) (12)
Substituting Eq. (9) into Eq. (12) and changing subscripts
mz 7(t) ag(x) + bmz 7o(t) op(x) + mz 75 (t) wg? ap(x)
Y/ 2 £

= qr(x) CN(X’t) (13)

Multiplying both sides of Eq. (13) by Oh(x) and integrating with respect to
X yields

1
Zyz(t)fl m o, (x) ap(x) dx + bZi‘g(t) /ﬁ m o (x) Ct}z(x) dx
0 Jo
£ £

1
+Z wnz 7;@(t)f m qn(x) aﬂ(x) dx
<0

1
=q /\ Cy(x,t) r(x) Oa(x) dx (14)
70
In Appendix A the following orthogonality condition is derived:
1
/\ m 0p(x) O0u(x) dx = 0 when £ # n (15)
~0
From Eq. (7) and (15) Eq. (14) can be written
1
7n(t) + brp(t) + w2 7n(t) = CIj Cn(x,t) r(x) (x) dx (16)
0
Defining the damping ratio as
_ b
T a7
n
(16) can be written
.. . 2 1
Tn(t) + 205 wy 7,(t) + Wy 7p(e) = qfo Cy(x,t) r(x) an(x) dx (18)
5
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The Fourier transform of a function f(t) over time T is defined as

f(w) = lim %%k/FT/Z £(t) e "1Vt g¢
T -+ 0 _T/2

Where f(t) can be expressed as

f(t) = /\m f(w) elwt gy
V-0

The power spectral denmsity of a function f(t) is defined by
N e— e
) = lim 2% @) -0
T - 0

Taking the Fourier transform of Eq. (18) yields

e Y o
o? + 21 oo uy + w?) Tl = qf GRGED r(x) o) dx
0

P q 1

The power spectral demnsity of 7,(t) is

Lt
By g (@) = lim Ty (w) 7n(-w)

T = o

Substituting Eq. (23) into (24) yields

g7zn(w) =
4x q2 flfl Cy(x,w) Cy(x',-w) r(x) r(x") ay(x) op(x') dxdx!
1lim 0 0
T T [(mzz - W?) + 2ipgw mg} [(wnz - w?) - 2ippw wh}
Defining

Y_(w) = (uy? - o) + 2ipqw wy

Palx,x',0) = lim 4T G G, w) Cy(x',-w)

- 00

Thus Eq. (25) can be written

1
qzk/;lL/; gN(X,x',m) r(x) r(xv) QZ(X) an(x,) dxdx’
g7£n(w) =

Yp(w) Y, (-w)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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Defining the integrated power spectral density of the local normal force
coefficients as

I, () = /ﬁl /ﬁl ﬂﬁ(x,x',w) r(x) dg(x) r(x') op(x') dxdx' (29)
Yo Jo

in
Equation (28) can be rewritten

2
- R Iﬂn(w)
By gy =22 (30)
Y (w) Y, (-w)

From Eq. (10) and (11)

y(x,t) =Zan<x) 7 () (31)

n

Taking Fourier transforms of Eq. (31) yields

e =Zan(x) 7@ (32)
n
From Eq. (21)
BrGex, = lin 25 ) 0 onlx") 7500 720D (33)
T = o L L
n

From Eq. (24)

Bylrax's) = ) ) ap(x) Glx") B74n(w) (34)
Y
From Eq. (30) this can be written
' 2
,@y(X,X',w) ___Z Z a,@(X) (xn(x ) q Iﬂn(w) (35)
£ n Yﬂ(w) Yn(—w)

This is similar to the equation derived on page 192 of Ref. 2. From Appendix
C (which is determined from Appendix B), the mean square of the deflection at
a point is

fe o]
920> = [ "y 6x0) 0 (36)
If the deflections are Gaussian, the 3-sigma values of the deflection are
30,00 = 352 G012 (37
7
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deflection of a specific mode is given by Eq. (11)

power spectral density of the deflection of this mode is given by

2
. = on(x) on(x') ¢ Inn(w)
Zyn(x,x' ,0) 12 ()]

mean square of the deflection of the mode is

1
<Yn2(X)> =L/ gyn(x’x)w) dw
0

bending moment at a point is given by

M(x,t) = Eﬁx)il(x) Y _ E(g)LI(gl z{jd:kx) y (6
n

power spectral density of the bending moment is given by

QM(x,x',w)z}: Ej 200 100 BGT 16D Oﬁ(x) dg(x‘) qZIEn(w)
74 Yy Y (-) L2

the mean square is given by

M2 (x)> =k/pm Ay (x,x,0) dw
0

If the moments are Gaussian, the 3-sigma values are

30y = 3 [2()>]7

power spectral density of the moment of a particular mode is

B G 0y = 0100 EG) 16) 0G0 dfee) o Tan(s)
Y, 2(wy| 12

The mean square of the moment generated by this mode is

2 [2 <]
(X)> = (x,x,w) dw
M, k/; gﬂn

Each of these power spectral densities is a function of Mach number and
Reynolds number.

(11)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Approximations can be made that will reduce the labor required in deter-

mining the bending dynamics of a vehicle.

A simplifying approximation can be made by considering Eq. (35) and (41):

8




S

) 2
gy(x’xr ’w) =Z z O‘f,(x) %(X ) q IEn(w) (35)
2 Yﬂ(w) Yn(_w)

n

¢M(x,x' sw)

(41)

T EGO 100 BGe) 1) oy () i (x') 42 15 (W)
7; i Yz(w) Yn(-w) L2

n

If the variation in Iﬂn(w) is relatively small over the frequency range, Eq.
(35) and (41) show that the cross modal terms in the double series are
negligible because Yg(w) Yn(-w) (where £#n) is large for all frequencies.
Thus Eq. (35) can be approximated by

'y o2
ﬁy(x,x"m) = an(x) o (x') ¢¢ I .(w) 6
| 702 (w) |

and Eq. (41) can be approximated by

Aylx,x',w) =2 G0 TG BGx) Ix) a;/ (=) O‘;/ (=) ¢ Ipn () (47)
T 72 ()] L2
From Eq. (38) and (44)
Py x,x" W) =Z B (x5 ", 0) (48)
n
¢M(X:X"(“)) :'Z )'ZMR(X,X',W) (49)
n
From Eq. (36), (39), (42), and (45)
<y2(x)> =Z <yn2(x)> (50)
2 2
M- (x)> =Z <M, (x)> (51)
. n

Thus, the approximation allows the cross modal terms in the integrated power
spectral density of the local normal force coefficient to be omitted. This
will greatly reduce the number of computations required in the data reduction.
However, some calculations should be made which include these cross modal
terms. The results of these calculations should be compared with those ob-
tained from the approximate procedure to serve as a check on the accuracy of
the approximation.

The approximation also shows that the mean square displacements and
bending moments are the sum of the mean square displacements and bending
moments of each mode. The mean square displacements and moments of each mode
can be determined and then summed. If the displacements and moments of a
given mode are excessive, the approximation will aid in identifying the mode
in question.
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A further simplification can be introduced by observing that the imped-
ance, defined by Eq. (26), is large for all frequencies except those near the
resonant frequency.

Y (W) = (w2 -0?) -2ip 0 w, (26)

Thus, if I, (w) does not vary greatly over the frequency range, Eq. (38) and
(44) show that gyn(x,x',uD and Zyn(x,x',w) will be approximately zero except
for frequencies near the natural frequency of each mode. Thus, Eq. (38) and
(44) can be approximated by

Bon(x,x',w) = (%) On(x') g% Ipn(up) (52)

7 PRITHY

PR O ORICRRC) o (x) & (x') q° Inn(wy) (53)

|, 2(uy) | 12

for

w, - £§9 <w< uh + f;b
and

g}'n(x,x',w) =0 (54)

QlM,‘l_'l,(X:x',“)) =0 (55)
for

w < wn - é;& and W> w, + f;h
From Eq. (26)

Y2 () | = 4my” wp* 569
Equations (52) and (53) can be rewritten

g (x,x',w) = ap(x) anp(x") q2 Inn(wy) -

e 4o 2 wh

n n
gMn(x,x',w) = EG) I() EGx) I(x) ag (x) O‘Z (x') ‘l2 Ln(9y) (58)
402wl 12

for

iy - SR cwguy+ Sh

10
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The frequency range, or band width, for which Eq. (52), (53), (57), and (58)
are applicable is given by

Mo, = 2g pp Wy (59)

where g is usually set equal to ®/2, Substituting Eq. (54), (55), (57), (58),
and (59) into (39) and (45) yields

2
<yn?(x)> = B aﬁz(x) T T () (60)
20, W

g B2 (x) 1700 o 2x) o I, (wy)

(61)
20, wyd 1.2

<Mn2(x)> =

The sum of the mean squares of the displacements and bending moments of each
mode will yield the mean squares of the displacements and bending moments of
the vehicle by Eq. (50) and (51). Thus, the approximation allows the mean
squares of the displacement and moments to be obtained without performing the
integration of Eq. (36), (39), (42), or (45). Furthermore, it is only
necessary to determine the integrated power spectral density at the natural
frequencies of the bending modes. Thus, a considerable decrease in data re-
duction effort is effected. Before relying entirely on these approximate
methods, sample calculations should be compared with those obtained from the
exact method to establish the accuracy of the approximations.

The geometric scaling rules are implied in the equations that have been
derived. The time t used in the equations is the real time of the vehicle in
flight. This real time of the vehicle t is related tc the reduced time t of
aerodynamic phenomena by

L
t—vt (62)

and the reduced time t is related to the real time t* during wind tunnel
tests by

~_

T =¥ (63)
The frequencies are related by

w= % w (64)
and

~ L* *

W=k W (65)
The scaling of the power spectral densities will now be determined.

11
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From Eq. (19)

—_— 1 T/2 -3
Cn(x,w) = 1lim 5= Jf Cy(x,t) e 1Wt d¢ (66)
Ni{X, T 3w 27 -1/2 N\Xs

Changing CN(x,t) to the reduced time base CN(X,E),

- L L (T2 o AT

Cn(x,w) = ;ﬁz ) ViR f-'"f/z Cy(x,t) e dt (67)
Thus

CNGx, D) = ¢ Cy(x,B) (68)

From Eq. (27)

PaCxxt, ©) = lim 42 SnGe, D) Tyl -9 27
Substituting Eq. (62) and (68)

7 ") = 1im  2E (L 2 v ' (69

N(x’x ,U)) = TJ-E o <L>'f v CN(wi) CN(X "w) )

\'

PaGe,x',0) = ¢ Oylx,x',) (70)

likewise
~ v
gﬂ(xsx' ,w) = i* QN(xax' » ) (71)

The integrated power spectral density of the local normal force coefficient
scales by the same rule. In Ref. 3 tests were conducted with a 1.6% model and
an 87 model. The data taken with these models were scaled by essentially the
above relations to the full scale vehicle. Virtually the same results were
obtained from both sets of test data for the full scale vehicle. These results
give experimental verification to the scaling rules.

12
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SECTION III. TEST METHODS FOR BENDING DYNAMICS

In evaluating Eq. (35), (38), (41), (44), (52), and (53), the integrated
power spectral density of the local normal force coefficients Iln(uo must be
generated from the experimental data. In the approximate methods it is only
necessary that In,(w) or Inp(w,) be determined from the data. In determining
the integrated power spectral density of the local normal force coefficients,
two methods are available. The first one is termed the series method. The
second one is called the cross spectrum method.

The series method will evaluate Eq. (29).

Ipn(w) =k/h1\jrl Qﬁ(x,x',m) r(x) ap(x) r(x') On(x") dxdx' (29)
0 0

From Eq. (27)

Iy, = Lim - F TGow OG0 @n

Expressing the local normal force coefficients as a series in terms of the
vehicle bending modes

Cy(x,t) = zew<t) 20 o, ) (72)

w

Taking Fourier transforms yields

G = ) T 2 o, 73)

w

Substituting Eq. (73) into Eq. (27) yields

Pe(x,x' ,w) = %iE - ’_‘IF:_’E z Xeu(w) Oy (-w) %%% o, (x) %g%))- o, (x") (74)
u w

Substituting Eq. (74) into Eq. (29) yields

Izn(“o =
1
%im ﬂﬁz{’Ejeu(w) ew(-w)U/\ Jﬁl m(x) ayg(x) au(x) m(x'") an(x')
- 00 . 0 0
u w

Oy(x') dxdx' (75)

13




G G G &0 G G G S S0 G B G 0 B e I‘ll'}llll -

»

From Eq. (7) and (15) this can be written:
Ign(w) = lim #% 6 4(w) B,(-w) (76)
T —» o

This is the cross modal power spectrum of the time dependent coefficients in

Eq. (72) that express the local normal force coefficients as series of the bend-
ing modes. In order to determine these coefficients, multiply both sides of

Eq. (72) by r(x)an(x) and integrate with respect to x.

1
[1 Cy(x,t) r(x) an(x) dx = yez(t) f m(x) ay(x) op(x) dx an
Jo b vo
£

From the orthogonality conditions given by Eq. (7) and (15)

8n(t) = f 1 og(x,t) T og(x) dx (78)
0

Consider that the vehicle is divided into segments as shown in figure 1. The
dimensionless distance to the center of the ith segment is given by x;. The
dimensionless length of the ith segment is given by Axy.

Assume that the local normal force coefficients CN(x,t) have unity
spatial correlation over the length of each segment. Thus

CN(x,t) = Cn(xi,t) (79)
from
a~ 3] Ix s
R R |
Equation (78) can then be written
xs + OXi
8,(t) = CN(xi,t)f 17 57 r(x) ozn(x) dx (80)
1 xj - x4
A

If the variation in the product r(x) a,(x) is small over each segment, this
can be written

Oae) =) OyGxi.8) £lxg) agley) By (81)
1

Assume that the local normal force coefficients do not necessarily have
unity spatial correlation over the length of each segment, but that variations
of the product r(x) an(x) are small over each segment. Then Eq. (78) can

be written
Mxy + %4
J[ 2 CN(x,t) dx

Xj -~ i

k

Lxq (82)

On(t) = Zr(xi) an(x4)
i i

2 |

14
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The quantity in the bracket is the average value of the normal force coefficient
over the length of the segment and will be designated Cy(x;,t). Thus Eq. (78)
can be written

0,(t) ==§ﬂ CN(xi,t) r(xi) an(xi) Oy (83)
Los

1

The Fourier transform of Eq. (80), (81), or (83) will allow Eq. (76) to be
evaluated.

2~ A o e

In applying the cross spectrum method, Eq. (29) will be evaluated. Assume
first that the model is divided into segments as shown in figure 1. Assume
that the local normal force coefficients CN(x,t) have unity spatial correla-
tion over the length of each segment. Thus

CN(X,t) = CN(Xi,t) (79)

over the range

xg - D cx<xg v B
2 2
From Eq. (27)
Bolxi,x4,w) = lm 4" CN(X1,9) Cy(xj,-@) (84)

Thus Eq. (29) can be written

I, (Jo)_T T?&‘(xl,\: W) fJ

UXJ— J - M

Xi

NL? NLQ

+ %y
X{ i
7 r(x) op(x) r(x')
T -

an(x') dxdx' (85)

If the segments are such that the variations in the product r(x) o (x) are
small over the segments, then Eq. (85) can be approximated by

I, (&) =y Z PGy x5,0) Tlx) Cpley) T(xp) Olxy) g O (86)
T 73
Now assume that the segments are such that the variations in the product
r(x) an(x) are small over each segment but that the coefficients over each

segment do not necessarily have unity spatial correlation. Then Eq. (29) can
be written

15
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Ifn(w) = Z Zr(xi) Gy (xs) T(x3) Gplxs) °
- L

J
+ £ oo+ &Xi
\ijJ —El\/PXI 5 On(x,x',w) dxdx' s ij (87)
SETEAS T

Substituting Eq. (27) into the quantity in the brackets

. x5 . Ixq
[\/FXJ + ~§l xi * ‘53 Fa(x,x' ,w) dxdx' J
x

R
x: + 3 px. o+ Iwy -
= lim éggjr ’ A;Zlk/p ' —Yi C(x,w) Cn(x',-w) dxdx' (88)
T - ™ Xj - 2| Xi had % &(i ij
VA K.
.+ i .+ —_——
- w4 U7 SR onGw) 4 [T T NG ) g, (89)
T _ Ix oy x: - &5 7 Akl
T > Xy 21 i i i 3

The two integrals are the average values of the Fourier transform of the local
normal force coefficients over the segments. Thus Eq. (87) can be written

L@ =) z%(xi,xj,w) r(xg) aplxg) Tlx;) olxy) fxg Ox (90)
1]
where
AeCxs xg, @) = Lin  §F SyGep,® CnGx;»-0) (84)

and CNixi,uO is the Fourier transform of the average local normal force co-
efficient acting over a segment.

If it can be determined that there is no correlation between stations
along the body, then Eq. (90) can be written

Izn(m):=ZE:ﬁN(xi,xi,m) r(xi) ap(xi) r(xi) an(xi) &y Mxy (91)
i

16
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If only the absolute value of the power spectral density of the local normal
force coefficients is available, the maximum possible values of the integrated
power spectral density of local normal force coefficients are given by

Izn(ua ==§: }: ,Qh(xi,xj,ubl . Iag(xi) an(xj)l . r(xi) r(xj) Oy ij (92)
i ]

where |¢N(xi,xj,u0l is given as a function of ﬂﬁ(xi,xi,uo and Qﬁ(xj,xj,w) in
Appendix D.

To determine the mean square of the vehicle bending deflections and bend-
ing moments, the power spectral densities of the bending deflections and bend-
moments must be obtained as shown in Eq. (36) and (42). Equations (33) and
(41) show that these can be obtained from the dynamic characteristics of the
vehicle, the dynamic pressure, and the integrated power spectral density of the
local normal force coefficients. This integrated power spectral density, given
by Eq. (29), is determined from experimental force or pressure data. It must
be scaled by the relations given in Eq. (70) and (71). The integrated power
spectral density can be obtained by either of two different methods, the series
method or the cross spectrum method. In both methods the body is divided into
segments. These segments must be selected on the basis of criteria presented
below. The calculation of the integrated power spectral density is based on
the real time of the wind tunnel test. The calculation by the series method

is outlined in Table I and by the cross spectrum method in Table II.

These

integrated power spectral densities of the local normal force coefficients
must be scaled to the flight case by Eq. (70) and (71).

Table I Series Method of Determining Ig,(w*) and I, (w *)
Factors to be .
Determined Selection of Segments
Unity pressure cor-| Small variation in|{Unity pressure cor-
relation over r(x) o,(x) over relation and small
segment segment variation in
r(x) ap(x) over
segment
CN(xi,t*) Measure local nor- Measure local nor-|Measure local normal
mal force over seg-| mal force over force over segments
ments or pressure segments or pressure at
at points and in- points and integrate
tegrate by Eq. (3) by Eq. (3)
en(t*) From Cy(x4,t*) and From Cy(x;,t¥) From Cy(x;,t*) and
Eq. (80) and Eq. (83) Eq. (81)
I, (4"), Iyn(wn*)| From 8, (t*) and From 6, (t*) and  |From 6_(t*) and
Eq. (76) Eq. (76) Eq. (76)

17




Table II Cross Spectrum Method of Determining Iy (w*) and Ij,(wy*)

Factors to be

Selection of Segments

Determined
Unity pressure cor- Small variation in|{Unity pressure cor-
relation over r(x) an(x) over relation and small
segment segment variation in
r(x) a,(x) over
segment
CN(xi,t*) Measure local normal | Measure local nor-| Measure local normal
force over segments |mal force over force over segments
or pressure at points|segments or pressure at
and integrate by points and integrate
Eq. (3) by Eq. (3)
ﬁN(xi,xj,w*) From Cy(x4,t*) and From Cy(x4,t*) From Cy(x4,t*) and
Eq. (84) and Eq. (84) Eq. (84)
Ipn (), I, (wp*)| From Zg(x;,x; , w) Frme&(xi,xj,w*) From ﬁN(x-,xj,w*)
and Eq. (85) and Eq. (90) and Eq. (86)

In both the series method and the cross spectrum method the body must be
divided into segments so that either the local normal force coefficients have
unity spatial correlation over each segment or be divided so that the variation

in r(x) a,(x) is small over each segment.

It may be desirable to divide the

body into segments such that thc pressurc has unity correlation cver cach seg-
ment and the variation in r(x) a,(x) is small over each segment.

The local normal force coefficients over each segment can be determined

~directly by constructing the wind tunnel model as a sequence of segments that
are independently suspended from a sting.
segment will be measured with inertia-compensated balance systems.

The normal force acting on each

The normal

force can also be determined by using standard pressure transducers and inte-

grating the pressure readings by Eg.

(3).

The local normal force coefficients can be used directly to compute the
integrated power spectral density by Eq. (76) and (80), (81) or (83), or they
can be used to determine the power spectral density of the local normal force

coefficients, which in turn can be used to compute the integrated power spectral

density by Eq. (85), (86), or (90).

The advantages of one criterion for selecting the segments are compared

with the advantages of other criteria in Table III.

The information is based

on the assumption that the distance over which the pressure has unity correla-
tion is small compared with the distance over which changes in r(x) an(x) are

small.

18
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Table

II1 Comparison of Criteria for Selecting Segments

Advantages

Comparison

Unity pressure cor-
relation over seg-
ment

Small variation in
r(x) a,(x) over
segment

Unity pressure cor- .
relation and small
variation in

r(x) an(x) over ‘
segment

Unity pressure
correlation over
segment

If pressure trans-
ducers are used,
fewer measuring in-
struments will be
required at each

segment.,

: .
Fewer measuring in-

struments required.

Small variation

in r(x) ap(x)

over segment

If inertia-com-
pensated balance
systems are used,
fewer measuring
instruments
required.

Fewer measuring in-

struments required.

Unity pressure

correlation and
small variation
in r(x) ay(x)

over segment

Ipn(w*) can be
determined by Eq.
(81) instead of
Eq. (80), or by
Eq. (86) instead
of (85)

If pressure trans-
ducers are used,
fewer measuring in-
struments will be
required at each

segment.

Table III shows that dividing the vehicle into segments so that the pres-
sure has unity spatial correlation is advantageous because fewer measuring
devices are required at each segment if conventional pressure transducers are

used,

Dividing the vehicle into segments, so that the variation in r(x) a,(x)

is small over the segment, is advantageous because fewer measuring devices
are required if inertia-compensated balances are used to measure the local

normal force coe

fficients.

Generally there is not much to be gained by

dividing the vehicle into segments so that over each segment both unity pres-

sure correlations and small variations in r(x) anp(x) exist.

It may be advan-

tageous to select some of the segments by one criterion and the others by
another criterion.

The series method is preferred to the cross spectrum method because, if
the cross terms in the integrated power spectral densities are not required,

fewer power spectral densities must be computed.
two following cases.

This is illustrated by the
In both illustrations, assume that only the first five

bending modes are of interest and that only the terms Inn(w*) or Inn(wn*) need

be evaluated.

These terms will have to be evaluated for several Mach numbers.
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In the first case, assume that the vehicle is divided into twenty-five
segments such that the variation in r(x) o,(x) is small over each segment.
Let the local normal force be measured with an inertia-compensated balance at
each segment. Thus, twenty-five measuring devices will be required. Using
the series method, only five power spectral densities will have to be computed.

In the second case, assume that the vehicle is divided into fifty segments
such that the pressure has unity spatial correlation over each segment. Let
the pressure be measured at eight points around each segment. Four hundred
measuring devices will be required. Using the cross spectrum method, as many
as 1,275 power spectral densities will have to be computed. Undoubtedly, many
of these power spectral densities will be approximately zero. The relation
derived in Appendix D will allow the absolute values of the cross term to be
determined. This relation may greatly reduce the number of power spectral
densities that will have to be computed by determining which terms are
negligible.

The smaller quantity of instrumentation and need for calculating fewer
power spectral densities indicate that the segments should be selected on the
basis of small variation in r(x) o,(x), inertia-compensated balances should be
used, and the series method should be used. Further development is necessary
in order to obtain a satisfactory inertia-compensated balance system of this

type.

Various vehicle parameters can be calculated from the integrated power
spectral density of the local normal force coefficients, as shown in Table IV.

Table IV Determination of Vehicle Bending Disnlacements and Strains

Factors to be Determined From 1
1, (w) I;,(w*) and Eq. (71)
I, (w) I, (@) and Eq. (70)
nyn(x,x,w) I,,(w) and Eq. (38)
<yn2(x)> Q&n(x,x,w) and Eq. (39), or I n(w) and Eq. (60)
ﬁ&(x,x,ub I,,(w) and Eq. (35)
<y2(x)> Q&(x,x,w) and Eq. (36), or <yn2(x)> and Eq. (50)
30y(x) Gaussian distribution and <y2(x)> and Eq. (37)
P (%, %, W) I,,(w) and Eq. (44)
<Mn2(x)> P (x,%x,w) and Eq. (45), or Inn(w) and Eq. (61)
Iy(x,x,w) I,,(w) and Eq. (41)
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Table IV Determination of Vehicle Bending
Displacements and Strains (Cont.)

Factors to be Determined

From

M2 (x)>

3oy (x)

Qh(x,x,w) and Eq. (42), or <Mn2(x)> and Eq. (51)

Gaussian distribution and <M?(x)> and Eq. (43)
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SECTION IV. RIGID BODY AND SLOSHING DYNAMICS

In determining the dynamic response of a vehicle, the rigid body and
sloshing dynamics must be considered, as well as the bending dynamics. The
sloshing liquid of a given mode is represented by a spring, dashpot and mass,
as shown in figure 2. The vehicle is assumed to be rigid and only one slosh
mode at a time is considered. The rigid body and sloshing dynamics can gen-
erate large vehicle stresses when the sloshing mass is asymmetrically posi-
tioned on the vehicle. The control system can be disturbed because of the
attitude variations of the center line of the vehicle.

The equations of motion of a vehicle with a single slosh mode n can be
developed from Newtonian mechanics as

T,Pn = +h8n + k (8, - By) + cp (Bn - Bp) + w(t) (93)
Isnby = kn(®y - By) - cn(d, - By (94)
where

Iyn is the moment of inertia of the vehicle about its center of gravity,
excluding the mass of the sloshing liquid of the nth mode

Ign is the moment of inmertia of the sloshing liquid of the nth mode about
the vehicle center of gravity

Bn is the angular deflection of the vehicle attitude angle caused by the
oscillations of the nth mode

%, is the angular deflection of the liquid of the nth mode

H(t) is the buffeting moment about the vehicle center of gravity

h is given by

h = Gy qur? 13 (95)

Taking Fourier transforms of Eq. (93) and (94) yields

(kg - 8 - o o) + fuey) By = [y + ducq] g + 7 969
[{ky - W Ign} * iweqy] By = [kp + iwc] B 97)
- T
T k2 - W e + 2iuwe, k (98)
[{(kn - h) - w? Iyn) + iwc, - : n n n}
[(kn - W ISD) + 20-)Cn]
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Bo = [l - & TIg) + dueg) B/ ((k, - B) -0? Iyn) (ky - o? Ign)
+iwep{(kn - WIgn) + (ky - h ~0?Iyp)}
-k 2 - 2iwe k, (99)

B =[G, - @ Top) + tucg] T/ [(Gy - 1) - o? Lg) (K, - & Ten) - k 2]

~iweg[w? Ign + W2 Iyp + h] (100)

Ao (@) = [(ky - @ Tep)2 + 2 cg?) B, () /
[{(ky - b) - o Iy} (ky - o Igpn) -k,2)2

+ W ? [P I, + o Iy + h)2 (101)
< o [(ky - w? Is?) + iwep] 5; (102)
ky + iwey
g&n(w) = {k—nz + w2 an] ﬂu(w)/
[{(kn = h) - (‘)2 Ivn} {kn = “’2 Isn} - kn2]2
+ we 2 [w? I, + 2 Iyp + h)? (103)

Pon-pa(®) = & Top? B0 / (G = 1) - & Ton) Uy - o7 Igp) = g2]2

+ wlep? [w? Iy + o I, + h)? (104)
From Appendix C
B 2> = f " on() du (105)
0
& 2> = f " B (@) do (106)
0
<(5n-5n)2> =f0°° Zon-pn(w) dw (107)

It is assumed that the natural frequencies of the various sloshing modes are
sufficiently far apart so that there is no coupling of the slosh modes or
between the slosh and bending modes. Thus, by the same reasoning used in
obtaining Eq. (48) through (51), the power spectral demsity of the center line
deflection f can be written
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Za(w) = z Zon (@) (108)
n

and

<2 =>:: g > (109)
n

If <p> is small compared to <B,>, then

<(Bp-B) 2> = <(d,-Bp) > {(110)
The buffeting moment u(t) can be expressed as

u(e) = 2¢,(t) ®3 L3q (111)
Thus

(@) = 4fc,(w) ©°RCLEG2 (112)

As shown in Section II, the power spectral demsity of the buffeting moment
coefficient in terms of the frequency of the vehicle is obtained from the power
spectral density of the buffeting moment coefficient as a function of the re-
duced frequency by

Fou(w) =L geu(w) (113)

The power spectral density of the buffeting moment coefficient as a function
of reduced frequency is obtained from the power spectral demsity of the moment
coefficient in terms of the real frequency during a test by

%u(z) = Z—:— Zop(uk) (114)

To calculate the sloshing dynamics of the vehicle, the power spectral
density of the buffeting moment coefficient about the vehicle center of gravity
must be determined. The buffeting moment can be obtained with virtually any
choice of segments and measuring devices that is suitable for determining the
bending dynamics of the vehicle. A procedure for calculating the sloshing
displacements, which will allow the computation of the sloshing stresses, is
given in Table V.
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Table V Determination of Vehicle Sloshing Displacements

Factors to be Determined

From

r(t*)

Wy
B, (k)

A
)
Zopu(w)
Fan(w)
Pon(w)
Zsn-pn(W)
<pn2>

2

<5n >

<(B,-Bp) 2>

Pressure data or local normal
force data

u(t*) and Eq. (19)

lim %E puk) p(-wk)

T » o
gu(‘*’*)/(leanBL%z), Eq. (112)
Zou (W) and Eq. (114)

Zcu(®) and Eq. (113)

Zcu(w) and Eq. (101)

Bou(w) and Eq. (103)

2z, (@) and Eq. (104)

Pan(w) and Eq. (105)

Be (@) and Eq. (106)

Zsn-pn(w) and Eq. (107)

26




>,

SECTION V, BUFFETING CALCULATION METHODS

The primary results of a wind tunnel buffeting test on a rigid model will
be time traces of the normal forces or pressures acting on the vehicle. These
can be determined by direct measurement with a segmented model or by use of
pressure transducers. As previously indicated there are two methods by which
the data can be analyzed: the series and cross spectrum methods. If the
series method is used, the average local normal force coefficients will be
electrically summed by Eq. (82) to yield the coefficients of the series in
Eq. (72) as functions of time. These coefficients will then be passed through
a power spectral density analyzer to determine the integrated power spectral
density, as shown in Eq. (76). If the cross spectrum method is used, the local
normal force coefficients will be input to a power spectral density analyzer,
which will yield the power spectral densities and the cross power spectral
densities of the local normal force coefficients, as shown in Eq. (84). Then,
using a digital computer, the integrated power spectral density can be deter-
mined by Eq. (90). The integrated power spectral density, determined by either
method, must be scaled by Eq. (70) and (71).

From this point, the bending moments and deflections of a vehicle caused
by buffeting can be calculated by the equations of Section II. The aerodynamic
pitching moment due to buffeting can also be determined from the local normal
force coefficients.

Programs have been written for the GE 225 computer that will reduce ex-
perimental data. These programs were written so that the PSTL-1 test results
could be used as inputs. Modifications necessary to utilize these programs
with the test procedure given in this report are presented in the final para-
graph of this section. The program that determines the elastic body buffeting
is presented in Appendix E. Two auxiliary programs must be used to generate
the proper input bending modes. The program given in Appendix F normalizes
the bending mode so that Eq. (7) is valid. To do this Appendix F must utilize
Appendix G, an interpolation subroutine, which is used in several programs
presented in this report. Appendix H describes the computer program that
determines the unsteady aerodynamic moment that acts about the vehicle center
of gravity.

Appendix E contains the program that calculates the bending moments (fig-
ures 1 through 8, Vol. II) and the bending deflections (figures 9 through 12,
Vol. II) at each vehicle station. This program requires input of the power
spectral densities of the normal force coefficients (figure 3), the bending
stiffness (figure 4), the bending modes (figures 5, 6, and 7), and their sec-
ond derivatives (figures 8, 9, and 10), the dimensionless local radii, the di-
mensionless vehicle station, and the incremental length of each segment. The
program computes the root mean square bending moment and deflection of each
missile segment for each mode and for the sum of the modes. The program can
also output the power spectral densities of the bending moments and deflectioms
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as functions of vehicle circular frequency and vehicle length and the mean
square bending moment and deflection caused by frequencies below the particular
circular frequency.

The program that determines the RMS pitching moment coefficient (figure
13, Vol. II) is presented in Appendix H. It is necessary to determine the
power spectral densities of the normal force coefficient, the vehicle coor-
dinate at which the measurements are taken, the incremental length of each
vehicle segment, and the local radii to operate this program. The principal
output is the RMS pitching moment coefficient. Also output are the power
spectral density of the pitching moment coefficient as a function of frequency
(figures 14 and 15, Vol. II) and the mean square of the pitching moment co-
efficient caused by frequencies below the particular circular frequency.

Both programs are in a form which will accept only the power spectral
densities of individual vehicle segments. 1In their present form they can com-
pute the absolute value of the cross power spectral densities by Eq. (D-5).
This choice of inputs is a consequence of the data form of the PSTL-1 tests.
To modify these programs to accept cross power spectral density terms and cal-
culate by the cross spectrum method, Section A of the programs, in Appendices
F and H, must be removed and the second index on all PHCP (I, I)'s must be
changed to J. Then J must be indexed in the read statement for reading the
PHCP (I, J)'s. In the pitching moment coefficient program, statement number
21 must be changed to statement number 17; and in the bending moment and
deflection program, statement number 19 must be changed to statement number 14,
Modifications necessary to adapt these programs to the series method are to
remove sections B and C in Appendices F and H. It will then be necessary to
input the integrated power spectral density as a function of frequency. Also,
the statement W = WD + WI in the pitching moment coefficient program must be
given the statement number 13. These programs must be put on a larger computer
than the GE 225 in order to have adequate storage to reduce data using either
the cross spectrum method, with cross terms input to the program, or series
methods of calculation.

The inputs and outputs of the programs described in Appendices E, F, and
H are given below.

Table VI Buffeting Calculations

Appendix ) Inputs Qutputs
E Z(x,x,w), EI(x), on(x), RMS M,(x), RMS M(x), RMS y_ (x)
at,l, x), r(x), X, &x RMS Y(X)’ ﬁM(x,x,w), gy(xax:w)
frequency components of
My and y,

F o (%), m(x) normalized an(x)

H %(X,X,UJ), r(x), x, & RMS Cpus gu(xyxaw)
frequency component of C,
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SECTION VI. SATURN I TEST DATA

Several rigid model buffeting tests have been conducted on various con-
figurations (Ref. 3 through 9). The cross spectrum method was used to reduce
the data in Ref, 5 and 9. The following general conclusions are drawn from
these tests, Variations in angle of attack have only a small effect on the
buffeting. In many cases variations in Reynolds number also have only a small
effect on the buffeting, Tn these cases, however; the variation was not great
enough to cause the boundary layer to change from turbulent to laminar flow
where the measurements were taken. The decrease in buffeting was small as
the Mach number increased above one. Removing the tower had only a small ef-
fect on the buffeting. The buffeting is not localized to the shock wave inter-
section with the body; in fact, it occurs over a considerable length. Refer-
ences 3 through 6 indicate that power spectral densities of the buffeting pres-
sure have significant values in the low frequency range. Thus, buffeting
occurs in the range where the control system can be affected.

To determine the effects of buffeting on the Saturn I, a series of wind
tunnel tests was conducted by NASA/AMES. The objective of these tests was to
establish the vehicle deflections and moments caused by buffeting. Rigid body
tests were conducted with pressure transducers located in the model. These
tests are identified as PSTL-1. Also, an aeroelastic wind tunnel test
was conducted using a Saturn model. These two approaches to the problems of
buffeting loads should yield identical results if the techniques upon which
they are based are correct. Therefore, they should provide checks on one
another., The PSTL-1 data are classified even though the results of the Saturn
aeroelastic tests and the results of the actual Saturn flight tests are not.

The PSTL-1 tests were performed on a 0,055-scale model of the Saturn I
Apollo vehicle at Ames Research Center in the 1l4-by-14 foot transonic wind
tunnel (Ref. 6). The right-hand side of the model was instrumented at 22 sta-
tions with pressure transducers bridged to provide output signals proportional
to the pressure loading, or local normal force, across the upper and lower
halves of the model in the pitch plane. The output signals were also calibrated
to be proportional to the moments for each model station and were electronically
summed so that a single-trace time history was obtained representing the total
fluctuating pitching moments about the first and second bending modal points,
at model stations 46.0 and 59.3, respectively. The individual station and
summed outputs were recorded on a 30-channel fm tape recorder. The root mean
square values of the moment traces are shown in figure 13, Vol. II.

The local normal force traces were used to generate the power spectral
densities of the local normal force coefficients (Ref. 6). The root mean
square values of the local normal force coefficients were obtained from the
power spectral densities (figure 16, Vol., II).

Unfortunately, neither the time traces nor the power spectral densities
of the local normal force coefficients were available. The root mean square
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values of local normal force coefficients and pitching moment coefficients had
to be used as the basis of the data reduction. The direct terms in the power
spectral density of the local normal force coefficients can be estimated from
the RMS values of the coefficients and from observing power spectral densities
obtained from other similar tests. The power spectral densities of the local
normal force coefficients are then used to compute the bending dynamics of

the vehicle by the cross spectrum method. The series method can not be used
with the PSTL-1 data because time traces of the local normal force coefficients
are required for the series calculations; thus, the cross spectrum method of
analysis was applied to the data.

From an examination of the data presented in Ref. 4 through 9, the general
shape of the local normal force coefficient power spectral densities was deter-
mined. This shape is composed of a line with a slope of -0. 4/q and of a
line of zero slope (figure 3). An upper limiting value for the zero slope por-
tion of the curve was determined from the above mentioned references as 4/q2.
The zero slope portion of the curve is white noise, which can be caused by
turbulence. Assuming that it is turbulence, the turbulent portion of the RMS
local normal force coefficient is estimated by observing the normal force co-
efficients at portions of the body where shock waves and flow separations
should not exist. The area under the zero slope lines of the power spectral
density curve from w = 0 to w = 6290 radians/sec is equal to the mean square
of the turbulent portions of the local normal force coefficient. This estab-
lishes the magnitude of the zero slope line. However, if the magnitude exceeds
the upper limit of 4/q2, then this upper limit is used as the magnitude of the
zero slope line. The area under the entire power spectral density curve from

= 0 to w = 6290 radians/sec is equal to the mean square of the local normal
force coefficient. This establishes the w = 0 intercept of the -0 4/q line.
The absolute values of the cross terms were determined by the methods in
Appendix D.

The procedure that permits the computation of the power spectral densities
of the local normal force coefficients from the root mean square values of the
local normal force coefficients is described in Appendix I. These power
spectral densities are used to compute the root mean square buffeting pitching
moment coefficient, the bending moments, and the bending deflections by the
procedures presented in Appendices H and E, respectively.

The previous analysis required the use of certain vehicle parameters.
The mass distribution, m, obtained from Ref, 10, is shown in figure 1ll. Bending
stiffness distribution was also obtained and is shown in figure 4. The bending
modes were taken from Ref. 11 and are shown in figures 5, 6, and 7. The second
derivatives of the bending modes with respect to longitudinal distance were
determined from figures 5, 6, and 7 and are presented in figures 8, 9, and 10.
Both the bending modes and their second derivatives are normalized by the
procedures presented in Appendix F. A damping ratio of 0.01, which is the
damping ratio of the vehicle structure, was used in the reduction of the PSTL-1
data.
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The power spectral densities of the local normal force coefficients and
the other parameters were inputs to the two programs. In one case, calcula-
tions are made based on no correlation between segments; i.e., ¢h(xi,Xj,m) =
0, for i # j. In the other, calculations were made assuming maximum correla-
tion between segments (assuming the most adverse conditions). The results of
these calculations are shown in figures 1 through 13, Vol. II.

A description of the bending modes that is more accurate than that used
in the data reduction is given in Ref. 12 and 13. These mode data were ob-
tained from dynamic tests of a full scale vehicle. However, these test data
included the multitank data of the first stage. The analysis used in this
report is based on the vehicle being represented by a single beam. Hence, the
single beam modes of Ref. 11 were used in the data reduction.
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SECTION VII. RESULTS AND CONCLUSIONS

Analyses have been made in the previous sections to determine suitable
forms for wind tunnel buffeting data taken with rigid models. Data expressed
in these forms will allow gross vehicle stresses and displacements to be cal-
culated. Both the bending and the sloshing responses of the vehicle have been
considered. Assumptions on which the analysis is based are listed in the in-
troduction., Two methods of determining the integrated power spectral density
of the local normal force coefficient are considered. One is the series
method, the other is the cross spectrum method. The series method does not
require that as many power spectral densities be calculated. Several approxi-
mations are made which greatly reduce the labor in calculating the bending
dynamics of the vehicle.

The data reduction procedures previously described were applied to the
PSTL-1 test results. The direct terms of power spectral densities were esti-
mated from the RMS values of the local normal force coefficients by the methods
of Appendix I. These were used to calculate the absolute values of the cross
terms. The power spectral densities were used in turn to calculate the root
mean square pitching moment coefficient about model stations 46 and 59.3, and
are presented in figure 13, Vol., II. Two data reduction techniques were used,
In one case it was assumed that there was no pressure correlation between
segments, so the cross terms were set equal to zero. In the other case, the
maximum possible correlation between segments was used. The power spectral
densities of the pitching moments are shown in figures 14 and 15, Vol. II.

The RMS moment calculations are compared with the measured value of the moment
coefficient. The computed values bracket the experimental values. The results
with the assumption of no correlation between segments compare more favorably
with the experimental results than those based on maximum correlation. These
results indicate that the method used to estimate the power spectral densities
of the local normal force coefficients gives reasonable results. The bending
deflections and moments based on these power spectral densities were determined
and are shown in figures 1 through 12, Vol. II. The control system and aero-
dynamic damping was not considered. A damping ratio of 0.01 was used in the
calculations.

Aeroelastic wind tunnel tests using a flexible model of the Saturn I,
whose dynamic characteristics match those of the flight vehicle, were conducted
at NASA/Langley. These tests are described in Ref. 14 and 15. The aeroelastic
tests were conducted at M = 0.9, whereas the PSTL-1 test data were at M = 0.8.
A strain gage was used to measure the model bending moment at a station. From
this information, the model bending moments along the entire vehicle were
determined. The vehicle bending moments were scaled from the model moments.
The scaling rule (Ref. 14) includes the vehicle damping ratio. In reducing
the aeroelastic data, a value for the vehicle damping ratio was obtained (Ref.
15) by summing the structural damping ratio, the aerodynamic damping ratio,
and a control damping term. The values used in determining the total vehicle

41



damping of the 15t mode were 0.011, 0.006, and 0.0467, respectively, for a
total of 0.0637. The RMS values of the bending moments obtained from these
tests are shown in figure 12, 1In order to provide a basis of comparison be-
tween the aeroelastic tests and the PSTL-1 tests, the PSTL-1 data were reduced
using a damping ratio of 0.064. The results of these calculations are shown
in figures 17 and 18, Vol. II. The general magnitudes of the bending moments
compare favorably in spite of the Mach number differences. However, the shape
of the RMS bending moment curve is much more erratic than that obtained from
the aeroelastic tests. The methods used to reduce the aeroelastic test data
and the method used to reduce the PSTL-1 data were examined to determine why
the shapes of the bending moment curves differ. The RMS bending moment of

the aeroelastic test is based on figures 13, 14, and 15. These curves, the
bending moments for unit nose deflections in feet, were computed by

MGx)  _ w212 f x - a% 113
Ta(OL  aa() Jo "O0 & @ & 1%

where M(x)/y,(0)L is the bending moment for a unit nose deflection, and the
length of the vehicle L includes the height of the tower. an(x) is based on
this length. This equation is derived in Appendix K. The method used to com-
pute the bending moment per unit nose deflection in reducing the PSTL-1 data
is given by

M(x) _ EI cx” x
2O - L2 0 (0) (40)

Results of these two methods are given in figures 16 through 19. The two
methods are equivalent, as shown in Appendix L. However, their equivalence is
dependent on 0, m, and EI satisfying Eq. (9).

77

ap(x) = =L (Bl of (x)> (9
midy

These three factors were obtained from three different sources. If they do

not satisfy the equation, then errors are introduced into the data reduction.

Equation (9) is written in integral form in Appendix M., The equation was

programed on a GE 225 computer, and is described in Appendix M. The inputs

to the program consist of the bending mode, mass distribution, bending stiff-

ness, length, and the natural frequency of the mode. The outputs are the

computed bending mode and the input bending mode. These will be identical if
Eq. (9) is satisfied.

The equation was solved on the computer using the vehicle parameters used
in reducing the PSTL-1 data. The results are shown in figure 20. These re-
sults may explain the difference between the shapes of the two bending moment
curves. They may also make the reduction of the PSTL-1 data suspect. However,
the general agreement of the magnitudes of the root mean square values of the
bending moments indicates that only small overall errors are caused by the in-
accuracies in the vehicle parameters used.
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The flight test of SA-7 was examined for buffeting loads (Ref. 16). A
graph showing the angular deflection in yaw at the instrumentation unit (ve-
hicle station 0.342) with respect to the stabilized platform is shown in
figure 19, Vol. II. This deflection includes the effects of winds, misalign-
ments, flight path correction, and control errors, as well as the buffeting
deflections. It is assumed that the signal is not filtered between 0.25 and
3.0 cps. The buffeting deflections occur at a frequency of 2.2 cps and higher.
The principal fluctuations occur at a much lower frequency. RMS buffeting
deflections of the first bending mode determined from the PSTL-1 test data
yield deflections of 0.0117 degrees for the maximum case and 0.00344 degrees
for the minimum case. These values are consistent with the higher frequency
oscillations of the fiight test data. The agreement between the results of
the PSTL-1 tests and the flight tests appears satisfactory.

The following conclusions are drawn from the analyses and results of this
report. Two methods can be employed in reducing the data of a rigid model
buffeting test: the series method, and the cross spectrum method. The series
method does not require that as many power spectral densities be computed as
does the cross spectrum method. If local normal forces are measured with
inertia-compensated balances, fewer measuring units are required than if pres-
sures are measured at points along the body. Likewise, if local normal forces
are measured with inertia-compensated balances, fewer measuring units will be
required if the segments are divided such that variations in r(x) anp(x) are
small over each segment.

From a comparison of the reduced PSTL-1 test data with the results of
the aeroelastic tests and the flight test, it can be concluded that the anal-
yses and data reduction procedures derived in the report are accurate. Further,
it can be concluded that, in general, the measurements taken during the test
were accurate, and the method used in estimating the power spectral density
of the local normal force coefficients is reasonably accurate. The results
indicate that the gross effects of buffeting on a launch vehicle can be deter-
mined from rigid body tests. The PSTL-1 tests and the aeroelastic tests show
that the gross vehicle effects of buffeting on the Saturn I are small.

Several general conclusions can be drawn from numerous tests that have
been conducted in the field. The removal of the escape tower from the Saturn
does not greatly reduce the buffeting. Small changes in angle of attack do
not change the buffeting level. Changes in Reynolds number do not appear to
change the buffeting level so long as transition of the boundary layer does
not occur at the point in question. Buffeting occurs at Mach numbers consider-
ably greater than one. The buffeting is not localized, but instead occurs
over large portions of a body.
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SECTION VIII. RECOMMENDATIONS

The following recommendations are made:

1. The buffeting data obtained in the PSTL-1 tests should be applied to
the Saturn V. The upper portion of the Saturn V is similar to the upper por-
tion of the Saturn I and most of the buffeting occurs in the upper region.

By using the Saturn V mass, stiffness, and bending modes, the gross effects
of buffeting on the Saturn V can be estimated.

2. The buffeting response of the Saturn I should be recomputed based on
the PSTL-1 test data, but with better mass and stiffness characteristics and
with better defined bending modes. These characteristics must satisfy Eq. (9).
The information used in the computations of this report does not satisfy this
equation. An accurate knowledge of vehicle characteristics should increase
the accuracy of the buffeting calculationms.

3. Wind tunnel tests should be run again with the same model used in the
PSTL-1 tests. However, the tests should be run over a broader Mach number
range and instrumentation should be placed on additional portions of the body.
The raw data should be made available so that it can be reduced by the methods
developed in this report. The estimates of the power spectral densities of
the local normal force coefficients could be eliminated, thereby increasing
the accuracy of the buffeting calculations.

4. An inertia-compensated balance system should be built that will yield
the local normal force coefficients acting on each segment. The model should
be physically constructed as independent segments. The segments should be
divided such that either the variations in r(x) ,(x) are small over each
segment or the local normal force has unity spatial correlations over each
segment. Each segment should be suspended from a central sting by an inertia-
compensated balance system. An inertia-compensated balance consists of a
strain gage bridge that will measure the normal force exerted on the segment
by the sting and of an accelerometer, or accelerometers, mounted on the segment
that will measure the normal accelerations of the segment. These readings
will yield the aerodynamic normal forces exerted on each segment. This meas-
uring system will require fewer measuring devices and will give more accurate
results than a model with several pressure transducers at each segment.

5. The analysis should be extended to include the multitank dynamics of
the vehicle. In the bending analysis presented in this report, the vehicle is
considered to be a single nonuniform beam. However, the first stage of the
Saturn I and Saturn IB consists of nine tanks, or beams, in parallel. Test
data indicate that the single beam assumption needs improvement.
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6. The dynamics of the control system should be included in the analysis
of the vehicle dynamics. Angular deflections in the vehicle at the instrumenta-
tion unit cause the control system to actuate and generate side forces where
the engines are located. These side forces cause bending deflections and
sloshing, which, in turn, cause control deflections. This dynamic interaction
between the vehicle structure and the control system was accounted for (Ref.

15) by increasing the damping term in the dynamic expression that represeats
the vehicle. This may account for the interaction of the structure and control
system. However, the phenomena need further analysis.

7. The aerodynamic damping of the vehicle in bending should be computed
and used as an input to the buffeting program. The aerodynamic damping may be
negative on some vehicle configurations. Negative damping could have a signi-
ficant influence on the design of the vehicle structure and the control system.
The quasi-steady method of computing the aerodynamic damping of bodies with
separate flow fields should be developed and programmed.

8. The analysis should be extended to include the effects of gusts on
the vehicle. Gusts cause bending and sloshing and should be included with
buffeting and aerodynamic damping as inputs to the gross vehicle dynamics.
The gross vehicle dynamics consist of the bending (including the multitank
case), sloshing, and control system dynamics.
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SECTION IX. SUMMARY

The gross response of a vehicle to buffeting is determined. The bending
dynamics of the vehicle is analyzed. The bending displacements and moments
of the vehicle are expressed as a series in terms of its bending modes. The
integrated power spectral densities of the local normal force coefficients
are used to determine the power spectral densities of the displacements and
moments which yield the mean square values of bending deflections and bending
moments. The scaling rules for the power spectral densities are derived.
Thus, wind tunnel data can be used to predict the gross loads induced in a
vehicle by buffeting.

Approximations are introduced into the analysis. It is necessary to make
some approximation for the longitudinal normal force distribution because it
can not be measured as a continuous function of length. The cross modal terms
in the integrated power spectral density of the local normal force coefficients
are shown to be unimportant in comparison with the direct terms. It is fur-
ther shown that the response of the vehicle can be estimated if the integrated
power spectral density of the local normal force coefficients is evaluated
only at the resonant frequency of the mode.

Two methods of determining the integrated power spectral density of the
local normal force coefficients are considered, the series and cross spectrum
methods., In the series method, the pressure distribution is expressed as a
series of the bending modes. The coefficients in this series yield the inte-
grated power spectral densities of the normal force coefficients. In the cross
power spectrum method, the power spectral densities of the normal force co-
efficients are integrated to yield the integrated power spectral densities of
the local normal force coefficients. 1If the series method is used, fewer
power spectral densities will have to be determined.

Two techniques for measuring the local normal force are available. One
consists of dividing the vehicle into segments over which the pressure has
unity spatial correlation. The other technique consists of dividing the ve-
hicle into segments such that variation in r(x) a,(x) is small over each seg-
ment. The normal force coefficient for the segment can then be determined by
measuring the pressure about the segment at several points with conventional
pressure transducers. The coefficients can also be determined with inertia-
compensated balances. Fewer measuring devices will be required if inertia-
compensated balances are used.

The rigid and sloshing body dynamics are analyzed. The mean square dis-
placement of the vehicle and sloshing liquids is determined as a function of
the power spectral density of the buffeting moments about the vehicle center
of gravity. Virtually any instrumentation that will yield the integrated
power spectral densities of the local normal force coefficients will yield the
power spectral density of the buffeting moment about the vehicle center of
gravity.
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Saturn I buffeting data, obtained with a rigid pressure model, was re-
duced by the methods developed in this report. The root mean square values
of the vehicle bending moments and bending deflections were determined. These
values compare favorably with the results of an aeroelastic model test and with
the flight test results of Saturn I (SA-7). However, the bending modes, mass
distribution, and bending stiffness do not represent a compatible set of data.
This incompatibility causes some discrepancies in the data.
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APPENDIX A
ORTHOGONALITY OF THE BENDING MODES

Consider Eq. (9) when £ # n.

U
1 EI 4
= — [ I A-1
a0 = 25 (B o0 (a1
@) = =5 (EL i) ) (a-2)
midy

Multiplying Eq. (A-1) and (A-2) by a,(x) and ay(x), respectively, and
integrating yields

1 1 .
w,2 L‘*f m o (x) ay(x) dx =f (EI op(x)Y ap(x) dx (a-3)
0 0
w? 14 fo 'm0 ag(x) dx = fo b Er ) apx) dx (a-4)
Subtracting

(ugz - mnz) LAL/;1 m ag(x) Oa(x) dx

1 V4 14 i/ 4
=\/; [(EI op(x)) o (x) - (EI Oé(x){ ay(x)] dx (A-5)

Integrating the right-hand side by parts
(wg? - wy?) L fo D nag(o o) dx = [og(x) EI d5x)) - 0p(x) (EI O(x))

- EI(c(x) ofy(x)
- @) )]G (a-6)

v ”
From the boundary conditions q,(x) and & (x) are zero at x = 0 and x = 1.
Thus :

U/\1 m o p(x) ay(x) dx = 0 when £ # n (15)
0
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APPENDIX B
COMPLEX CONJUGATES OF CROSS POWER SPECTRAL DENSITIES

Consider the Fourier transform of f(t)

f(w) = 1lim 51; [Tiz £(t) o ot dt (B-1)
T = = o -'T,
T/2 . ‘
@ = lim L1 / £(t) cos wt dt - 1lim L /2 £(t) sin wt dt
T+ w20 J_7/2 T+ o210 Y_1/2 (B-2)

Substituting for the two components
f(w) = A(w) - iB(w) (B-3)

From Eq. (B-1), f(-w) can be written

P T/2 i :
f(-w) = lim _L £(t) et dt (B-4)
T+ 2 -T/Z
: T/2 . T/2
f(-w) = lim 1 J[ £(t) cos wt dt + lim X f(t) sin wt dt
T = o 27 -T/2 T »+ 0 27 -T/2 (B'S)

Substituting for the two components
f(-wy= A(w) + iB(w) (B-6)

Comparing Eq. (B-3) and (B-6) reveals that f(w) and f(-w) are complex conju-
gates. Now consider the cross power spectral density function

Blxgsxn,w) = Lim I g, (8-7)
This can be written
Pxyxg,w) = lim g_ff (4,(w) - iB,(w)) (An(w) + iB_(w)) (3-8)
Hxg,x,,w) = %im 4% (A (w) Ap(w) + B,(w) B (w))
-» 0O T
+ 1 (Ap(w) By(w) - A_(w) By(w)) (8-9)
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Consider
Plxn,xg,0) = lim 22 FCap, @) E(xg,m) (3-10)
© P(xyxy,w) = %13 . -;:-‘—’3 (Ap(w) - iB (w)) (A (w) + iB,(w)) (8-11)

P(xp,xy,w) = lim % (Ag(w) Ap(w) + By(w) Bp(w))
T > =

-1 (A,(0) By(w) - A(W) By(w)) (8-12)

Comparing Eq. (B-9) and (B-12) shows that g(Xg,xn,w) and ﬂ(xn,xz,w) are complex
conjugates. When £ = n, @(xy,xp,w) is real from Eq. (B-9). Usually when the
cross power spectral densities are required, they are added in pairs; i.e.,
Z(xg,xn,w) + ﬁ(xn,xg,ub, where £ # n. The imaginary components, when added,
are equal to zero; so, only the real components of the cross power spectral
densities are used. Thus, for many applications, only the real parts of the
power spectral demsities need be determined.
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APPENDIX C
DETERMINATION OF THE MEAN SQUARE VALUES FROM
THE POWER SPECTRAL DENSITIES

The mean square of a function is defined as

<y2> = “l‘im % fT/z y(t) y(t) dt (c-1)
T . m /

- v T/

Substituting the Fourier integral (Eq. (20)) for one of the functions

T/2 P
<y2> = 1lim l\/r y(t) [‘/Pm y (w) vt dw'] dt (c-2)
T > lJ-T/2 e
Letting W' = ~w
T/2 [ e -iwt | ]
<y2> = lim Tlf / y(t) f y(-w) e T dw| de (C-3)
T = ‘T/2 L Y- N
Reversing the order of integration
1 [ - pT/2 > ]
<y2> = lim EL/F' y(-w) J[ y(t) e Wyt | dw (C-4)
‘1‘ - 0 - 00 - -T/2 -
From Eq. (19) this can be written
20 1y 21 [F o =
<y“> = lim £= y(-w) y(w) dw (C-5)
T = o -0

From Appendix B, y(-w) and y(w) are complex conjugates. The product of two

functions that are complex conjugates is equal to the square of the absolute
magnitude of one of the functions. The integrand is an even function of w.

Thus, Eq. (C-5) can be written

<y2> =\'/N°° lim 4% y(~w) y(w) dw (C-6)
0

T - o
From Eq. (24) the power spectral density function is defined as

Py = Lim 7% 3(&) y(-w) (c-7)

T >
Thus Eq. (C-6) can be written

<g2> =f°° Fy(w) dw (c-8)
0]
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APPENDIX D
RELATION BETWEEN ﬂN(xi,xj,m), Zy(xi,xi,w), and ﬁﬁ(xj,xj,uo

The power spectral densities are given by

PCxg g, = Lim M EGLD) NG D (0-1)
gN(xj,xj,w) = %?T _ %E CN(xj,uD CN(Xj,-w) (D-2)

gN(Xi,Xi,U) gN(xJ :xj,w) = lim ‘:# CN(Xi,w) CN(Xj,‘w)}'

T
EE CN(xj,w) CN(Xi,‘U’):' (D-3)
Thus
ﬂﬁ(xi,xi,ub Qﬁ(xj,xj,w) = ﬁﬁ(xi,xj,w) gN(xj,xi,w) (D-4)

The two power spectral demsities on the right-hand side of Eq. (D-4) are complex
conjugates of one another, by Appendix B, The product of a function and its
complex conjugate is equal to the square of the absolute value of the function.
Thus, Eq. (D-4) can be written

lgN(xisxj 3(‘)) I =+ JgN(x]'_ 1 X4 :w) gﬂ(xj ’xj :w) (D'S)

The square root of the product of two power spectral densities is the
absolute value of the cross power spectral density between the two power
spectral densities.
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APPENDIX E
BENDING MOMENT AND DEFLECTION PROGRAM

This program computes the bending moments and the bending deflections of
an elastic vehicle from rigid body wind tunnel test data. The necessary inputs

for the program are given in the description of the definitions in this appendix.

The inputs ALP(I), ALP1(I), and PHCP(I,I), KK are the punched card outputs of
the normalization program, described in Appendix F, and the local normal force
power spectral demsity program, described in Appendix I. The outputs of the
program are the RMS bending moments and deflections. If sense switch one is
in the down position, the power spectral densities of the bending moments

and deflections will be output as functions of frequency. The mean square
values of the power spectral demsities of the bending moments and deflections
generated by fluctuations below a given frequency will also be output as func-
tions of frequency.

This program must be modified if it is to be used to reduce data by the
cross spectrum method using cross terms of the power spectral demsities of the
local normal force coefficients as inputs. Section A, which is indicated in
the program listing, must be removed. The second index on all PHCP(I,I) must
be changed to J. The read statement for PHCP(I,J) must include a J index.

The statement number 19 must be changed to statement number 14,

If this program is to be used in reducing data by the series method,
sections A, B, and C must be removed. Statements that provide for the input
of the integrated power spectral densities of the local normal force coeffi-
cients to the computer program will have to be added.

Definitions

A. Inputs (must be in this order)

1, Single inputs

*IM Month

*ID Day

*IY Year

*IF Number of vehicle segments

*JL Number of vehicle segments or number of cross terms
*M Key to maximum or minimum case

*NF Number of significant bending modes
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B.

*HT
**Q
IXTLM
*3UM
3*TL

*oky

2. Multiple inputs
**R (1)
**DX (1)

**EI(I)

Final value of the model circular frequency
Increment of the model circular frequency
Tunnel dynamic pressure

Length of the model in inches

Velocity as seen by the model in ft/sec
Length of the vehicle in inches

Velocity of the vehicle at the proper Mach no.
ft/sec

Dimensionless radius of the vehicle at each segment
Dimensionless length of each segment

Bending stiffness at each station of the vehicle

3. Multiple inputs that must be input with each mode

**ALP(I)
**ALP1(I)

**RO

**WN

#*PHCP(I,I)

Jh kKK

Internal Definitions

M(1,J)

PHY(I)

PHM(I)

Normalized bending mode of the vehicle
Second derivative of the normalized bending mode

Damping ratio of the vehicle (first value on a
card with RO and WN)

Natural frequency of the vehicle (second value on
a card with RO and WN)

Power spectral densities of the local normal force
coefficients

Key that indicates that all of the power spectral

densities have reached the zero slope portion of
the curves

Multiplier of the power spectral density of the
local normal force to yield the integrated power
spectral density

Power spectral density of the bending deflection

Power spectral density of the bending moment
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QuY (1)

QuM(I)

(1)

@P(I)

SY(I)

SM(T)

YN(I)

PMN(I)

YT (I)

PMT(I)

WP

ZN

DI

Previous value of the power spectral density of the
bending deflection

Previous value of the power spectral demsity of
the bending moment

Parameter that is set equal to the power spectral
density of the bending moment or the bending
deflection

Parameter that is set equal to the previous value
of the power spectral density of the bending moment
or the bending deflection

Mean square of the bending deflection

Mean square of the bending moment

Root mean square of the bending deflection of an
individual mode

Root mean square of the bending moment of an in-
dividual mode

Root mean square of the bending deflection of the
total of all modes

Root mean square of the bending moment of the total
of all modes

Index of the vehicle segments

Index of the vehicle segments

Index of the integration with circular frequency
Initial value of the circular frequency

Previous value of the circular frequency

Key for the termination of the integration process
Integrated power spectral density

Vehicle circular frequency

Impedance

Key that determines whether the program is com-

puting moments or deflections
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D Incremental value of the power spectral den-
sities of either the moments or the deflectioms.

ZNP Previous value of the integrated power spectral
density

W Value of the circular frequency at any particular
calculation

*Single card input with last digit in columm No. 5
**Single or multiple card input with a 12-colummn width (i.e., Format (6E12.4))

*%%Single card input with last digit in colummn No. 10
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11
12
13

DIMENSION R(22)9DX(22)5E1(22)9ALP(22)9ALP1(22)9PHCP(22922)9PN(2252
12)9PHY (22)9PHM(22)5QUY (22)50UM(22)5,QU(22)9QuUP(22)95YV(22)95M(22) VYN

2(22) sPMN(22)5YT(22)4PNUT(22)

READ 100,iM

READ 100,1iD

READ 100y Y

READ 100,51IF

ReEAD 100, 4L

READ 100sM

READ 100sNF

READ 102, wF

READ 102yl

READ 10250Q

READ 102,TLM

READ 102,VM

READ 102s7TL

READ 1029V

REAU 1029(R(1)sl=191lF)

READ102s (OX(1)sl=1s1F)
READ10Zs(ETIC(I)plstslF)

PRINT10k s IMeIDs IV (RCID)oDX(I)otl(1)oletsiF)
PRINT 11k olFy jLoNFoMoWFsWisu
1 = 1

YT(I)s0.

PMT(I)=0.

IF(1-1F)832s2

Is J+1

Gu T0 1

WWsHWli

Ns4q

WPs-WW

KK = 0

IN=0.

Je1

KF=Q

L0

=14

INP=Qo.

Ks4

READ102s (ALP(1)5121,1F)
READ102s (ALP1(1)yl=1,1F)
READ 102sROsmwN

PRINT 113sN
PRINTLO05,(ALFP (1) o ALPL(i)slns1,yif)
PRINT 115,RO0yWN

WilsWW

IF(KK) 55556

READ 1029(PHCP(isl)yl=st,l¥)
READ 1064KK

1s1 |
WeWPé+ll

IF(W-WF)12511510

WiswF-WP

WaWpP+Wli

KFsg

[« - IS

IF(K=-1)1351351%
PM(I9J)*R(I)eR(J)*DX(1)*DX(I)ALP(I)*ALP(J)

t
(NEXT PAGE)
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14
15

16
17

18
19

*

20
21
22

23

24

25
26
27
28
29
30
31
32
33
3
35
36
37
38
39
L0

b1

42
W3

120

I+(M)15510910
PM(1,4J)2ABSF(PM(15J))
GO TO 18
IFC(I~-J)17518917
PHCP(l9J)age.

GO 10 19

PHCP(I9J)*SORTF(PHCP(ls1)ePHCP(JsJ))

INSIN+PHCP (1 9J)ePNu(isJ)
1F(J=-JL)20s21521

Je 41

GO TO 12

Js1

IF(1-1F)22523,23

I=144

GO T0 12

I=s4

(FROM PREVIOUS PAGE)

Is14
INTZNs(VM/TLM)s(TL/V)
WXsWe (TLM/VM)e(V/TL)

DIis(WNee24lXse2)e824(2¢8ROsWXeNN) s
PHY(1)*(ALP([)9e2e¢Qee2¢ZN) /Dl
PHM(I)=(ALP1(1)ee2erj(])ee2e¢Qee2¢ZN)/(LUle(TL/12:)e02)

IF(1-1F)259206926
Isl+q

GO TO 2

=14
IF(K=2)39528928
IF(L)29529,30
Qu=*PHY ()
QuP=QUY (1)

GU T0 31

Qus PHM(I)
QUP=QUM(IT)

Ds((QU-QUP)*W1/2.+QUPsWI)e(TLM/VM)e(V/TL)

IF(L)32932533
SY(l)sD+sSY(])

GO TO 3
SM(1)sPD+SM(I])
IF(I-1F)35536,36
Isl+1

GO 70 28

fs1
IF(L)Y38s37,38
Ls1

GO TO 28

Ls0O
IF(K=-1)bQsb0sh1t
SY(1)=0.
SM(1)s20e.
QUYCT)=sPHY (1)
QUM(T)sPHM(IT)
IF(I=-IF) 2563503
I=1+41

GO TO 39

=1

IF(SENSE SWITCH 101205141
PRINT 1135,N
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121

e
s

L5
L6

L8
L9
50
51
100

102
104

11

105
115
106
108

109
110
111
112
113

PRINT 108

PRINT 1099NsnoWXoWNs INg (PHY (L )sSY(I)oPiM(Ll)osM(T)el®1slr)
IF(KF)bbgbly7

KsK+1

WEs W

IF(ZNP-ZN)Wkb6sU59M40

Wis1000.

ZNPsZN

IN%0oe

GO TO &

PRINT 110

Is4

YNC(I)=sSQRTF(SY(I1))

PMN(]l)s SARTF(SM(1))

PRINT 1131919 YNCI)sPMNC(I])
YTCE)sYNCLII+YT(])
PMTCL)*PMNCI)+PMTC(])
IF(I=-1F)48ybyyek9

Tel41

GO TO &7

a1

IF(N=NF)50s51,51

NaN+1

GO 10 3

PRINT 1129 (lsYT(1)sPMT(l)sl=1,s1¢)
STOP

FORMAT(I5)

FORMAT(6E12.4)

FORMAT(1H S6HDATE 91291H=31291H=-912//1X5HTHE FOLLOWING ARE INPUT

1S WHICH DO NUT CHANGE WITH MODE//7XeHR(I)9s9XSHDX (1) o YXoHEI(12/(3E1
2k ols))

FORMAT(1HO92X2HIF 9 3X2HJIL 9 3X2HNF o b X1HM 9 SX2HWF 9 OX2nW1 9 IX1HUW/ M ID93F10

1e2)

FORMAT(1HOs6XO6HALP (1) s 8BX7HALPL(1)/(2E1ke0))

FORMAT(1HO»S5SX2HRO912X2HWN//2E1k«6)
FORMAT (110)

FORMAT(1HO 91 X1HN2XIHK o e X2HWX 9 IX2HWNSOXLHLNS 1 2XOHPHY (I ) s XY (1) /4

13XOHPHM([)98XWHM([))

FORMAT(213592F10e353E1k.0/60X2E14¢6/(40X2E1be06/40X2E1446))
FORMAT(1H151X1HI30X5HYN(T)»8XSHMN(]))

FORMAT(1352E14.6)
FORMAT(1H191X1HI s 6XOHYT(I)9OXOHMT(1)//(1392E1k46))
FORMAT(1H1930HTHE FOLLOWING ARc FUR MODE nO.si5)

END

*STATEMENT NUMBER MUST BE CHANGED TO 14
**CHANGE TO: 5 READ 102, ((PHCP(I,J), J =1, JF), I = 1, IF)

NOTE DIMENSION STATEMENT MUST ALSO BE MODIFIED
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APPENDIX F
BENDING MODE NORMALIZATION

In the methods developed in this report it is necessary that the bending
modes be normalized such that Eq. (7) is valid.

fl m anz(x) dx =1 )
0

This program computes the normalized bending modes. A normalization constant
C is computed by

c = 1
jAfolmAn(x) dx

where AL (x) is a bending mode which has not been normalized. The normalized
bending mode is obtained by multiplying the unnormalized bending mode by the
constant C. The second derivative of the normalized bending mode is obtained
by multiplying the unnormalized second bending mode by the normalization
constant and the square of the length of the vehicle in inches. The program
outputs are the normalized bending modes and the second derivatives of these
modes. The outputs are punched on cards and printed. The form of the punched
outputs is such that the cards can be used as inputs to the programs de-
scribed in Appendix I.

(F-1)

This program must be used in conjunction with the interpolation subrou-
tine of Appendix G.

Definitions
A, Inputs (must be in this order)

1. Single inputs

*IM Month

*ID Day

*IY Year

*JF Number of vehicle segments

*KF Length of the tables that are to be input
*NF Number of significant bending modes

71




»

B.

*DX
**XXI
**TL
2, Multiple inputs

**P(K), X(K)

**XM(JT)

Integration interval
Initial vehicle station

Length of the vehicle in inches

The mass at a particular station and the
corresponding dimensionless vehicle station

Dimensionless vehicle station where the local nor-
mal force is concentrated.

3. Multiple inputs that must be input with each mode

**AL(CK), X(K)

**AL1(K), X(K)

Internal Definitions
KB1
KF1
KB2
KF2

K83

KF3

ALP(I)

ALP1(I)

The unnormalized bending mode and the corresponding
dimensionless vehicle station

The unnormalized second derivative of the bending
mode with respect to vehicle length in inches

and the corresponding dimensionless vehicle
station

Beginning of the mass table

End of the mass table

Beginning of the unnormalized bending mode table
End of the unnormalized bending mode table

Beginning of the second derivative of the un-
normalized bending mode table

End of the second derivative of the unnormalized
bending mode table

Mode number

Vehicle segment number

Normalized bending mode

Normalized second derivative of the bending mode

The area under the curve generated by multiplying
the unnormalized bending mode and the mass
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BB

Y1

Y2

Unnormalized bending mode at a particular vehicle
station

Unnormalized second derivative of the bending mode
at a particular vehicle station

Normalization constant

Incremental area under the curve

Mass at a particular vehicle station
Vehicle station for a particular loop
Previous value of Y2

Product of mass and the square of the unnormalized
bending mode

Index of the tabular values

*Single card inputs with last digit in columm 5

**Single or multiple card inputs on a 12-column width (i.e., Format (6E12.4))
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DIMENSIONSP(L0)9X(120) 9XM(22)9sAL(B0)sALL1(120)9ALP(22)9ALP1(22)
READ 100,IM

READ 100s1iv

READ 1001y

READ 100, JF

READ 100,sKF

READ 100sNF

READ 102,0X

READ 102s,xX1

READ 102TL
REAU102s (F(K) g X(K)sK31,KF)
PRINT 1035 iMsIDs1YsDXeXX19JdFsNFsKFsTL
PRINT 10k (P(K)oX(K)sKoK®19KF)
KB1=1

KF1=sKF

KB2sKF1+1

KF2s2eKF

KB3=KF2+14

KF3=*3«KF

ReAD 102,(XM(J)sJUs1,y4F)

PRINT 1115(XM(J)sJdsJsiysJF)

N=4q

Js1

A2Q.

READ 102, (AL(K) o X(K)oK2KBL9KF2)
READ 1025 (AL1(K) o X(K)sK2KB3sKF3)
PRINT 105N
PRINT108,(AL(K) s X(K) gKoKsKB29KF2)
PRINT 105N
PRINT1095 (ALI(K) s X(K)9oKsKsKB3I9KF3)
XS XXI1

CALL INT(KB1sKF19XSeXsPsP1)
CALL INT(KB2sKF29XSesXsAL9AA)
Y22P1s(AAse2)

IF{(XS=XX1)byols3

DAz (Y2-Y1)*DX/2«+Y1eDX

AsA+DA

Yisvy2

XS*XS+.u001

IF(XS=1.0)558,8

XS=XS-.0001

XSsX5+DX

IF(XS=1¢0)79796

DX=ABSF(1.0-XS)

X>5t1.,0

GO T0 2

C24.0/7SARTFH(A)

XSsXM(J)

CALL INT(KB2sKFr29sXSsXsAL9AA)
ALP(J)sCepA

CALL INT(KB3skF3,XSeXesAL1y8B)
ALP1(J)=*Ces(TLee2)eBB
IF(U-JF)1usiistl

JrJ+1

w0 T0 9

PRINT 1069 (ALP(J)sJdel1yJF)

PUNCH 1065 (ALP(J)pJety F)
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PRINT 107 (ALP1(J)sJusiyuF)
PUNCH 1079 (ALP1(J)sJs1,uF)
IF(N-NF)12513513
12 NsN+1
GO TO 1
13 STOP
100 FORMAT(15)
102 FORMAT(6E124)
103 FORMAT(1HOSOHDATE 91291H=-91291H=912//1X2HUX92X3XX ] 9 2Kt IF 9 o K2HNF
192X2HKF /Fe29F5e291X 12921/ /1X3HTLsF100es//)
104 FORMAT(SX4HMASS910XGHX(K)923X1HK/(2t14.55120))
106 FURMAT(1H1,14XO6HALP(J)/7C(6L12.4))
407 FORMAT(IHO21LX7HALP1(J)/7(6E1244))
105 FORMAT(1h19s30HTHE FOLLOWING ARE FOR MODE NO.sl5)
108 FORMAT(1HO»eXSHAL(K) 3 10XMHX(K) 923X1HK/ (LEL14e55120))
109 FORMAT(1HOs3X6HALL1(K) 910XMHX(K) 923X1HK/ (2E14.55120))
111 FORMAT(1H19MXSHXM(J)910X1HI/(EL14e55i9))
112 FORMAT(1XE1lebhob12eb ot XEL1lebgE1 291 XELLlobgbE1244)
END
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APPENDIX G
INTERPOLATION SUBROUTINE

This program performs the interpolation in a two dimensional system. The
program checks to see first if the value of the independent variable is out-
side the table that has been input., If the value is outside the program limits,
the program outputs the table length, the independent variable value, and the
first and last values in the table, If the independent variable is within the
limits of the program, a linear interpolation is conducted. The program
always starts at the beginning of the table and runs until it reaches the
proper value,

The linkage or connection between the main program and this subroutine
supplies the data specified in the definition section and in the order speci-
fied. The length of storage space specified in the dimension statement for

the dependent and independent variables must be the same as in the main
program,

Definitions
A. Linkage Connection (must be in this order)

1. Input to the subroutine from the main program

KK The beginning index number of each table

KKL The ending index number of each table

XS The present value of the independent variable
X Independent variable

Y Dependent variable

2. Transferred from the subroutine to the main program

PAR_ Interpolated value of the dependent variable
B. Internal Definitions

L Index of the second value of the table

LL Index of the last value of the table
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50

51

110

SUBROUTINE INT(KKsKKLSXSsXsYsPAKR)
DIMENSIONsXx(120)9Y(120)
IFC(XS=X(KK))e(XS-X(KKL)))1s1+50
LeKK+14

LLsKKL

Do 2 I=L,sLL
IFCOXS=X(1))e(X(I=1)-XS))25356
CONTINUE

JF(XS=X(]1))es5951

is1~-1

PAR=Y (1)

Go 70 7

PAR=Y (1)

G0 Y0 7
PARsY(ID)=((XCE)=XS)e(Y(I)=Y(I=-2)))/(X(L)=X(i=1))
GO 10 7

PRINT110 KR o KKL o XS X(KKI 9 X (KKL) s Y(KK)
STOP 1
PRINT110sKKoKKL2XSoX(KKIsX(KKL)»Y (KK)
STOP 2

RETURN

FURMAT(1H 9215s4E14.5)

END

77



~

APPENDIX H
BUFFETING PITCHING MOMENT PROGRAM

The root mean square of the pitching moment coefficient due to buffeting
is computed by this program. The required inputs are shown in the definition
section of this appendix. It should be noted that the PHCP(I,I) and KK por-
tions of the input are the punched output of the local normal force coefficient
power spectral density program described in Appendix I. It must be in the same
order as it is output by the procedure of Appendix I. The power spectral den-
sities of the pitching moment and pitching moment coefficient, as well as the
values of the mean square pitching moment coefficients generated below vari-
ous frequencies, are output as a function of model frequency. All outputs
are for the model and must be scaled to the full vehicle.

This program must be modified if it is to be used to reduce data by the
cross spectrum method using cross terms of the power spectral densities of the
local normal force coefficients as inputs. Section A, which is indicated in
the program listing, must be removed, The second index on all PHCP(I,I) must
be changed to J. The read statement for PHCP(I,J) must include a J index.
Statement number 21 must be changed to statement number 17.

If this program is to be used in reducing data by the series method,
sections A, B, and C must be removed. Statement W = WP + WI should be num-
bered 13. Statements that input the integrated power spectral densities of
the local normal force coefficients to the computer program will have to be
added.

Definitions

A. Inputs (must be in this order)

1. Single inputs

*IM Month

*1ID Day

*IY Year

*IF Number of vehicle segments

*JL Number of vehicle segments or the number of cross
terms

*M Index to maximum or minimum case

TAWEF Final value of the model circular frequency
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B.

WL

*%X1

**RR
**PHI
2. Multiple inputs
**R(I)
**DX(I)

**X(I)

**PHCP(I,I)

FhAKK

Internal Definitions

WP

w

PM(I,J)

ZN

VA |

QUM

Increment on the model circular frequency

Dimensionless vehicle station about which the
pitching moment is computed

Dimensionless reference radius = 0.0489

3.1416

Dimensionless radius of the vehicle at each segment
Dimensionless length of each vehicle segment

Dimensionless station at which the local normal
force on the vehicle segment is concentrated

Power spectral density of the local normal force
coefficients

Key that indicates that all of the power spectral

densities have reached the zero slope portion of
the curves

Previous value of the circular frequency

Value of the circular frequency at any particular
calculation

Multiplier of the power spectral density of the
local normal force that yields the integrated
power spectral density

Integrated power spectral density

Power spectral density of the pitching moment

Power spectral density of the pitching moment
coefficient

Previous value of the power spectral density of the
pitching moment coefficient

Incremental value of the mean square pitching
moment coefficient

Mean square pitching moment coefficient generated
up to a given frequency
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DCM Root mean square pitching moment coefficient

KF Key to the end of the integration process

I Index of the vehicle segments

J Index of the vehicle segments or the cross power

spectral densities

K Index on the integration process

*Single card input with the last digit in columm 5

**Single or multiple card inputs with a 12-columm width (i.e., Format (6E12.4))

*%**¥Single card inputs with the last digit in colummn 10
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20
** 24

22
23
25

26

DIMENSION PHCP (22922)9PM(22922)98(22)9DA(22)9K(22)
KKsO

KFs0

Ksq

J=1

=1

TM.OQ

ZN'O.

QuMs=0.

ReAD 100, iM

ReAD 190, ID

READ 100, 1Y

READ 100s IF

READ 100, JL

READ 100y M

READ 102, WF

READ 102, Wl

READ 162, X1

READ 102y RR

READ 102, PHI

KEAD 102y (R(1)ylst,IF)

READ 102y (DX(i)ol=1slF)

READ 1029s(X({)slx19lF)

PRINT 106y IMy IDs JYs X1

PRINT 107y (RCIJoUX(1)oX(l)plol®t,yir)

PRINT 108slts il oMoHF W] 9oRR
PINT 109

PRINT 140

leq

WP=z~-W]|

[F(K)191,92

REAU 102s(PHCP(fsldols1slF)
READ 103,KK

I=1

wWrWP+uWl

IF(W-WF)7359s 355

WlsWF-WP

WalWF+nl

B e " * e

KFs=s1
IF(K=1) 16516917
PMCLs ) aRUTDeR(II e (X =X1) o (X(J)-X21)eUX(1)o0A(J)

IF(M)99519,18
PM(19J)sABSF(PM(Isd))
GO TO 19
IF(1-J)20919520 A
PHCP(19J)*SARTF(PHCP (19 1) *PHCP(JsJ))
GO T0O0 21
PHCP(l1sJ)20.

INsZN+PHCP (19 J)sPM(15J)

TF(J=JL)2£923523
JrJ+t

G0 10 7

Js1
IF(1-1F)25,26526
Isl+41

Go 10 7

Is1
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ZM'.&GS‘(iO.“iZ)'ZN

PHM® (1e/(bos(PHI®®2)s(RReebH))) 2N

IF(K=2)27428,28
28 Ds(PHM=UUM)*W]/ 2+ +QUMeN]

TM=2TM+D
27 1F(QUM-PHM) 32531932
31 Wi=»100.
32 QUMs=PHM

PRINT101 9Kk oWeZMePHMyTM

IF(KF)30530s29
30 KK+t

WPsW

IN=Q.

Go 70 13
29 DCMsSARTF(TM)

PRINT1125DCM

STOP
100 FORMAT(I15)
101 FORMAT(1H ,10XI29bE14.5)
102 FORMAT(6E12.4)
103 FORMAT(110)
106 FURMAT(1H 915X s6HDATE 912s1H-91291-512//10X912HDCM ABOUT XsFbelk/

173X s20HTHE FOLLOWING ARE INPUT DATA)
107 FORMAT(1HOs6X6HRADIUSIEX7HDELTA Xs6X9HX STATIONsOX1HIZ(3E14e5918))
108 FORMAT(L1HO o 7X2HIF 9 3IX2HIL s X1HM 9 BX2HIWF 98X ,HW L 9BX2HRR/5X931592F101>
109 FORMAT(1H1,34H THE FOLLOWING ARt OuTPUT)
110 FORMAT(1H »11X1HKsIXIHFREQUEN(Y 97 XSHPHI MeIXO6HPHI CMs11X2HTM)
112 FORMAT(1A0s10XH4HDCMsEL2e k)

END

*IF B AND C ARE REMOVED THIS STATEMENT MUST BE NUMBERED 13
**IF A IS REMOVED THIS STATEMENT MUST BE RENUMBERED 17
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APPENDIX I
LOCAL NORMAL FORCE COEFFICIENT POWER SPECTRAL DENSITIES

This program computes the power spectral demsities of the local normal
force coefficients from root mean square values of the local normal force
coefficients. This procedure is necessary for reducing the PSTL-1 data since
only the RMS values of the normal force coefficients are available. The
power spectral densities of the local normal force coefficients are necessary
to compute the RMS pitching moment coefficients and the RMS bending moments
and deflections caused by buffeting. The required inputs for the program are
indicated under the listing of the definitions. Included in the inputs are
the turbulent components and total root mean square values of the local normal
force coefficients. The outputs are printed and punched. The punched outputs
are in the proper form to be used in both the pitching moment coefficient
program described in Appendix H and the bending moment and deflection program
described in Appendix E.

Definitions
A. Inputs (must be in this order)

1. Single input

*IM Month

*ID Day

*IY Year

*IF Number of vehicle segments

F*WF Final value of the model circular frequency
*RWT Increment on the model circular frequency
**SLP A value which when divided by Q will yield the

slope, usually -0.4
*%Q Tunnel dynamic pressure
2. Multiple inputs
*%TCP(T) Root mean square local normal force coefficient

**CPT (1) Turbulent portion of the root mean square local
normal force coefficient
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B. Internal Definitions

A(T)

PHT (I)

PHCP(I)

T(I)

WS (1)

The height of the portion of the curve with slope
of -0.4/Q?

Index for the vehicle segments

Index for the frequency increment

Key that indicates that all of the power spectral
densities of the local normal force coefficients
have reached the zero slope portion of the curves
Key for the termination of the integration process
Counter that indicates that the zero slope portion
of all the local normal force power spectral densi-
ties has been reached

Power spectral density of the turbulent portion of
the local normal force coefficient

Power spectral densities of the local normal force

coefficient

Difference between the squares of the turbulent and

total root mean square local normal force coefficients

The model frequency at which the portion of the
local normal force power spectral density with a
slope of -0.4/Q2 terminates

*Single card input with last digit in colummn 5

**Single or multiple card input in a 12-column width (i.e., Format (6E12.4))
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11

12

14

15

i6

17

DIMENSION (PT(22)sTCP(22)

DIMENSION PHT(22)9T(22)9WS(22)9A(22)9PHCP(22522)

KKs0

KFs0

Ksq

Isg

READ 100,1imM

READ 100,10

READ 100s1Y

READ 100, 1F

READ 102,wF

READ 102,WI

READ 102,SLP

READ 102,40

READ102, (TCP(1)9121,1F)
READ102s (CPT(1)sls1,1F)
PRINT 104s1My1DylY

PRINT 1059(TCP(I)sCPT(1)9ls1s1F)
PRINT 106sSLPsWFoWlsuslIF
PRINT 107

WPs-Wl

Is4

SLPsSLP/Qee?2

IF(K-4)15192
PHT(1)3CPT(l)ee2/WF

IF(PHT (1) =k e/7(Qee2))39394
PHT(])'“./(Q‘.Z)
T(I)s(TCP(1)022-CPT(l)oe2 )
IF(TC(1))65595

PRINT 110s T(1)ePHT(1)ewFyeQyl
GO TO 19

WS(1) = SURTF(2¢T(1)/ABSF(SLP))
A(T)*ABSF(SLP)sWS(I])

1F( 1'1)8,0’7

WsWP+Wl

IF(W-WF)749,35

WlsWF-WP

WesWP+ul

KF=g

IF(WS(1)-W)11940,5,10

WCa2 W

Ms O

GO 10 12

WCsWS(I)

MsMe+l
PHCP(loi)=PHT(1)4AC])4+SLPeW(
IF(I-1F)14515515

1]+

GO 170 13

Is4

IF(M-22)179106916

KK=1

KFe{

PRINT 108 (PHCP(191)yin1slF)yKK
PUNCH 1089 (PHCP(T91)yi2151F) KK
1214

WPsHW
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IF(KF)18,18,19
18 KsK+1
GO TO 13
19 STOP
100 FORMAT(IS)
102 FORMAT(6E12.4)
10k FORMAT(1H »15X6HDATE 91291 H-91291H~912//36X37HTHE FOLLOWING ARt R
1MS PRESSUKE INPUTS)
105 FORMAT(1HO15XO6HTCP (1) s8XOHCPT(I1)//7(10X2E14ak))
106 FORMAT(1HO»10XS5HSLOPE sSX2HWF o7 X2HW] s 8X1HQs 7 X2HIF//10XF5e293XF7 ¢4 92
1XF6bel93IXFDe195X12)
107 FORMAT(1H1s46HTHE FOLLOWING ARE THE POWER SPECTKAL ODENSITIES/1X32H
10F THE RMS PRESSURE COEFFICIENTS)
108 FORMAT(OEL124/6E12e¢4/6E124/4k12e4/110)
110 FORMAT (1HO910XeSHT (1) sE12e%92X o7 HPHT (i )3 psiZ2ebsZXo3rNrasEiLileiny
12X92HQ*EL12e432X92H]1=15)
END
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APPENDIX J
BENDING MOMENT COMPUTED BY SECOND DERIVATIVE METHOD

This program computes the vehicle bending moment for a unit nose deflec-
tion by means of equation 40. This will allow a comparison to be made with
the integral method of Appendix K that was used in the aeroelastic tests. The
inputs for the program are shown in the definitions given in this Appendix.
The outputs consist of the bending moments at arbitarily selected vehicle sta-
tions caused by a nose deflection of one foot. These calculations are made by
the second derivative method.

Definitions
A. Inputs (must be in this order)

1. Single input

*IM Month

*1D Day

*TY Year

*IF Number of vehicle segments

*JL Number of vehicle segments or number of cross terms
*M Key to the maximum or minimum case

*NF Number of significant modes

FRYE First value of the mode circular frequency
W T Increment of the circular frequency

*%Q Dynamic pressure

**TLM Model length in inches

**YM Model velocity in ft/sec

FkTL Length of the vehicle in inches

*xy Vehicle velocity in ft/sec

87



2. Multiple inputs
*R (1)
**DX(I)

**EI(I)

Dimensionless radius at each vehicle segment

Dimensionless length of each vehicle segment 1

Bending stiffness of each vehicle segment \

3. Multiple inputs which must be reinput for each mode

**ALP(T)

**ALP1(I)

**PHCP(I,I)

FRAKK

PM(I,J)

PHY(T)

PHM(I)

QUY(T)

QUM(T)

Qu(1)
QUP(T)
SY(I)

SM(1)

YN(I)

PMN(I)

: ' »

y |

|

1

‘ ' B. Internal Definitions

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIl.llIl.l.l..l...ll.IIIIIIIIIIIIIIIIIII--T*

Normalized bending modes at each vehicle segment (

Normalized second derivative of the bending modes
at each vehicle segment

Local normal force power spectral densities
Key that indicates that all of the power spectral

densities of the local normal forces have reached i
the zero slope portion of the curves ‘

Multiplier of the local normal force coefficients
power spectral density to yield the integrated
power spectral density

=0 i

Power spectral density of the bending moment deter-
mined by the cross spectrum method

=0

Previous value of the power spectral density of

the bending moment determined by the cross spectrum
method

Parameters set equal to PHM(I)

Parameters set equal to QUM(I)

=0

Mean square of the bending moment computed by the
cross spectrum method

The bending moment obtained by equation 40

Root mean square bending moment for a particular
mode
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YT (I)

PMI (1)

WP

ZN

ZNP

D1

The total bending moment determined by equation 40

Root mean square bending moment determined by the
cross spectrum methods for the total of all modes

Index of vehicle segment
Index of vehicle segment or number of cross term

Index of the integration with respect to circular
frequency

Storage for the initial value of the circular fre-
quency increment

Previous value of the circular frequency
Key to the termination of the integrationm
Integrated power spectral density Inn

Previous value of the integrated power spectral
density

Vehicle circular frequency

Impedance

=0

Incremental value of the power spectral density of

the bending moment computed by the cross spectrum
method

*Single card input with the last digit in columm 5

**Single or multiple card input with a 12-column width (i.e., Format

(6E12.4))

**%Single card input with the last digit in columm 10
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10

i1
12
13

DIMENSIUN R(22)50X(22)9E1(22)5ALP(22)9ALP1(22)9PHCP(22522)9FM (2252
12)sPHY(22)sPHM(22)9ulUY(22)5s0UM(22)5QU(22)90UP(22)9SY(22)95M(22)9 YN

2(22)9sPMN(22)9YT(22),PMT(22)
READ 100,iM

READ 100,1iD

READ 100,1Y

READ 100 iF

READ 1005 4L

READ 100,m

READ 100, NF

READ 102, WF

READ 102,%1i

READ 1u2sd

RcAb 102,7TLH

READ 102sVM

READ 102, TL

READ 102,V

READ 102 (R(1)ols1s1F)
READ102s(DX(i)o1s19IF)
READ102s (EI(1)9li=191F)
PRINT104 s IMeIDs IYs(R(I)sDX(l)si(i)ol=1siF)
PRINT 1169 lF s LsNFoMenFWIsU
I = 1

YT(1)=Q.

PMT(!)'O.

IF(I=-1F)8y9292

Is 141

GO 70 1

UL EY B

N=1

WPe-WW

KK = 0

IN=D.

Js1

Kt=20

Ls1

l=q

INPsQ.

Ks1i

READL102s (ALP(1)sls1,sIF)
READ102s (ALP1(1)yl®1s1IF)
READ 102sROsNWN

PRINT 113.N
PRINT105,CALP(1)sALPL(1)sl*1,1F)
PRINT 115sROsWN

WilishW

IF(KK) 259546

READ 1025 (PHCP(isl)sls19IF)
READ 1(0o0sKK

I=q

W2WP+Wl

IF(W-WF)12511510

Wit WF-WF

WeWP+wl

KFe=4

IF(K=-1)13513s14
PM(19J)sR(I)eR(J)*DX(1)eDX(I)eALP (1) *ALP(J)
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1k
15

16
17

18
19

24

25
26
27
28
29
30
31
32
33
3k
35
36
37
38
39
L0

L1

b2
3

bl

IF(M)15518,10
PM(13J)sABSF(PM(]1sJ))
GO TO 18
IF(1-J)17518,17
PHCP(19J)=0.

Go TO 19

PHCP (19 J)sSURTF(PHCP (I 1) sPHCP(JsJ))
INeZN+PHCP (i J)ePM (1l J)
IF(J=-JL)20921921
JsJ+1

GO 710 12

J=g

IF(I1-1F)22523,23
Tales

GO T0 12

=1

=1

ZNsZNe (VM/TLM)=(TL/V)
WXsWe(TLM/VM)=(V/TL)
DIz (WNes2+pXee2)s024(Le*ROeWXsHN)oe?
PHY(I)'O.
PHM(I)s(ALP1(1)se2eE [ (])0e200ee2s7ZN)/(Di*(TL/12e)222)
IF(I-1F)25,26526
Isl+t

GO T0 2%

T4

1F(K=2)39928,28
IF(L)29929930

WGUsPHY (1)

QuP=QUY(I)

GO TO 31

Qus PHM(I)

QuUP=QUM(I)
UsS(Luu-uyurIsmiscevwur *wWi)s(TLM/VR)e(V/TL)
IF(L)32532,5,33
SY(1)=D+SY (1)

Gu T0 3
SM(1)=sD+sM(])
IF(I-1F)359306936
I=1+41

GO TO 28

I=1

IF(L)38537538

L=1

GO 10 28

Ls1

IF(K=1)40s40s41
SY(i)=Q0.

SM(l)-O.

QuY (1) sPHY (D)

QUML) *PHMC(IT)
IF(I-IF)W2s439043
[=]1+1

Go 10 39

Isq

IF(KF)hbghts7

KsK+1




WPs W
IF(ZNP-ZN)WOs 45946

45 wil=100.

L6 ZNP=ZN
ZN'O.

GO TO &

7 PRINT 110
ls1

b7 YN(I)es(ETCI)*ALPIC(]))/(ALP(L) e ((TL/12.)%%2))
PMN(1)s SQRTF(SM(I))/ALP (1)
PRINT 11151 sYN(I)4PMN(])
YTCI)sYNCI)+YTC(])
PMTC(EI)SPMNCI)+PMT(I)
IF(I-1F)48349;40

L8 l=]+1
GO TO &/

L9 =14
IF(N-NF)50+51451

50 N=:N+1
GO 10 3

51 PrINT 1125 (loYTC1)oPMT(1)9lsq,1F)
STOP

100 FORMAT(1l5)

102 FORMAT(6E12.4)

104 FORMAT(1r sOHDATE 91291H-91291H=912//71X5WHTHE FULLOWING ARE INPUT
1S WHICH DO NOT CHANGE wiTH MODE///X&HRC(1)sIXSHOX ()9 9XSHEI (1) /7(3kL
2k .bk))

11k FORMAT(AHO22X2HIF o IX2HIL 3 IXLHNF o b X1 HM o SA2HWE 9 8X2HW I 29X 1LHW/ W 1553F10
12)

105 FORMAT(1HO»6XO6HALP()9s8X7HALPL(]1)/(2E14.6))

115 FORMAT(1HO»S5X2HROe12X2HNN//2E1L46)

106 FORMAT (110)

108 FURMAT(1HO 91 X1HNg2X1 Ky e X2HWX 3 IX2HWN9 OXL2HZN g1 2XO6HPHY ([) o8XbennY (1) /b
13XOHPHMU ) sOXEIM( 7))

109 FORMAT(21392F104¢393E14¢0/80X2E14¢6/(00X2E14¢6/740X2E14.6))

110 FORMAT(1HL1oIX1HI g XYHELASTIC Me7XS5HPSD M)

111 FORMAT(I3s2E14.6)

112 FORMAT(1H1s1X4HI 3 3IX10HELASTIC MTs7X6HPSD MT//(1392E146))

113 FORMAT(1H1s30HTHE FOLLOWING ARE FOR MODE NOeol5)

END
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Definitions

A, Inputs (must be in this order)

1. Single inputs
*IM

*ID

*TY

*JF

*KF

*NF

**DX

*FAXXT

**TL
Multiple inputs

**P(K), X(K)

R R VA AN

**AL(K) , X(K)

**AL1(K), X(K)

B. Internal Definition

--------—-'-
»

Month

Day

Year

Number of vehicle segments

Length of the tables that are to be read in
Number of significant modes

Integration interval

Initial vehicle.station

Length of the vehicle in inches

The mass at a particular station and the correspond-
ing dimensionless vehicle station

Nimancimmlass vehicle station where the local
normal force can be considered to act

3. Multiple inputs that must be re-entered with each mode

The unnormalized bending mode and the corresponding
dimensionless vehicle station

The unnormalized second derivative of the bending

mode with respect to vehicle length, in inches, and
the corresponding dimensionless vehicle station

Beginning of the mass table
End of the mass table
Beginning of the unnormalized bending mode table

End of the unnormalized bending mode table
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KB3

KF3

DXI

X0

PI

Y2

DA

DX

Y1

Beginning of the second derivative of the unnor-
malized bending mode table

End of the second derivative of the unnormalized
bending mode table

Index on the mode number

Index on the vehicle segments

Initial value of the inmtegration interval
Vehicle station at any particular increment
Vehicle segment of interest

Mass at a particular vehicle station

Unnormalized bending mode at a particular vehicle
station

The value of the quantity to be integrated at a
particular vehicle station

Incremental area of the moment integral
Integration interval

Area up to the particular vehicle station under the

mecsmvrn

Previous value of the quantity to be integrated at
a particular vehicle station

Natural frequency of the mode

*Single card inputs with the last digit in columm 5

**Single or multiple card inputs with a 12-column width (i.e., Format (6E12.4))
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DIMENSION,P(L0)9X(120) 9 XM(22)5AL(80)9AL1(120)9ALP(22)9ALP1(22)

READ 100y iM
READ 180,1D
READ 100,1Y
READ 10u, JF
ReAD 100,KF
READ 100,NF
READ 104,0X
READ 102, XxX]I
READ 102,7TL
ReAD102s (P(K) o X(K)sK=1gnF)

PRINT 1035IMeiDs1YsDXoXXIgUFgNFsKFsTL

PRINT 104y (P(K)sX(K)sKgK=s1sKF)
KBis=1

KF1sKF

KB2sKF1i+1

KF2s2eKF

KB83sKF2+1

KF3*3+KF

READ 1025(XM(J)yJds1,UF)

PRINT 4145 (XM(J) e s Jsie JF)

WED ]

J=1

Dx1=DX

A‘o.

READ 1025 (AL(K) 9 X(K)oKsKkB2yKF2)
READ 1025 (AL1(K) o X(K)sKsKBISKF3)
READ 102snN

PRINT 105N
PRINTL108,(AL(K) o X(K) s KoK2KB2,KF2)
PRINT 105sN
PRINT1099(AL1I(K) o X(K)sKoK*KB3sKF3)
PRINT 122sWN

PRINT 123

X0sXM(J)

CALL INT(KB1lsKF19XSeXsPsP1)
CALL INT(KB2sKF29XSesXpALAA)
Y2:P1s(AA)*(X0-XS)/1.0
TE(XS=XX1)hoko3

DA (Y2-Y1)eDX/24Y120DX

AsA+DA

YisY2

XSt XS+.0001

IF(XS=X0)5508,8

XS XS-.0001

XSsXS+uUX

IH(XS=-X0)7.7s6

DxsABSF (X0-XS)

XS=X0

GO 70 2

As(WNee2)s ((TL/12.)0e2)eA
PRINT 120sA

AsQe

Xsexxl

Dx=DXx1

IF(J-JF)11912512
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14 JsJ+4

GO T0 10
12 IF(N=-NF)13s1ks1b
13 N=N+1

GO 70 1
1% STOP
100 FORMAT(IS)
102 FORMAT(6E12eMh)
103 FORMAT(1HOsO6HDATE 91291 H-91291H-12//1X2HUX92XI XX 192X 2HIF 9 2X2HNF

192X2HKF /Flhe29FS5e¢29AX1292106/7/74X30TL*+10e4/7/)
104 FORMAT(S5XuHMASS»10X4HX(R) 9 23X1HR/7(2EL1bheDpi20))
105 FORMAT(1H1930HTHE FOLLOWING ARE FOR MODE NUeyl5)
108 FORMAT(1HO s XSHAL(K) 910Xk X(K)923X1HK/(2E14e55120))
109 FORMAT(1HO» 3IX6HALL1(K) s10XWHX(K) 923X1HK/(2EL1%e59120))
111 FORMAT(1H1 s XSHXM(J)9p10X1HI/(EL16e5919))
121 FORMAT(1H1s9X13HINTERGRATED M)
120 FORMAT(10XE14.6)
122 FORMAT(1HOsuX3HWN=2sF10.5)

END
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APPENDIX L
EQUIVALENCE OF THE TWO METHODS OF COMPUTING BENDING
MOMENT PER UNIT NOSE DEFLECTION

Consider Eq. (113)

Ma(x)  _ wpll? X

ya(OL ~ an(0) J, m(z) (-2} oplz) dz (113)

and Eq. (9)
1 EI o, {

O!n(z) = "m'('z"')'_%'z <:£ n(Z)> (9)
Substituting Eq. (9) into Eq. (113) gives

Ma(x) - 1 u/_x p y7

ya(0)  an(O)L J (EI o (z)) “(x-2) dz -1)

Mp(x)

_ X X 7”7 # 1 X ” /7 _
¥,(0) T o, (O)L L/; (EI dy(z)) dz - A &/;) (EI o (x)) z dz (L-2)

Integrating the first term in Eq. (L-2)

%\3“‘ ' mr Hoatan X (RT W,,h“,‘rx (L-3)
Jo . W@ - o

Since the second and third derivatives of the bending modes of a beam at a
free end are equal to zero, Eq. (L-3) can be written

7 (0L JC)X E1 & () dz = Gy (B (Y (L-4)

Integrating the second term in Eq. (L-2) by parts

1 X

’d 4 1 4
om (0L h/;x (E1 oc/n (2)Y'z dz = m{z(EI ozi1 (z))/}

0
-/X (EI (z)Y dz} (L-5)
0

Since the second and third derivatives of a bending mode are zero at x = 0

RO fox €1 o (Y2 b= = gy {X(EI oy Y - @1 o (x))} (L-6)
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Substituting Eq. (L-4) and (L-6) into Eq. (L-2) yields

Mp(x) = EI /" )
Y0~ a(0) 7@y 2 Tal®) @-7)

which is the same as Eq. (40) by Eq. (11) and its second derivative.

Mp(x) _ EI yp’(xp,t)
yn(0) Lynt(lo,tl)l (40)
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APPENDIX M
COMPATABILITY OF INPUT DATA

The mass distribution, bending stiffness, and bending modes, which were
obtained from several sources, must represent a congistent set of data and
satisfy Eq. (9). The procedure presented in this appendix applies data to
the equation to verify this fact. However, Eq. (9) contains fourth derivatives
of the bending modes, and since the accuracy of obtaining the fourth derivative
of the bending mode from experimental data is questionable, the equation must
be integrated.

Consider
an(e) = == (ﬁ{—}, 4 (z>> ©)

Integration yields

W
TA,(W) = f w(z) apz) dz = (—%‘-’% (w)j -0 (4-1)
0
S
IB,(s) = j; IA (W) dW =%§§.§% o (s) -0 (M-2)
) _ :,fDrn/\ 7 . . VA sas AN
1L \P) Wn* L JO EI(S) us T oun \p/s “wn \vJs - -
X
Dy = [ ¥ 16,0 b = 0a() - G(®) - x o ©) Qt-4)
0
or
a (%) = 0y (0) + x Gy (0) + IDy(x) (4-5)

which is the integrated form of Eq. (9) for a free-free beam.

To check the compatibility of the mass distribution, the bending stiffness
distribution, and the bending mode, the above equations have been programmed.
The data must be input in the order prescribed in the definition section of
this appendix. The program will compute for one mode only. Additional com-
puter runs must be made for each mode after the new bending mode and first
derivative of the bending mode at x = O replace the previous values in the in-
put data. The output is the computed bending mode, the input bending mode,
IAn, IBy, ICp, and ID,. The results of this comparison are shown in figure 20.
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APPENDIX K
BENDING MOMENT COMPUTED BY INTEGRAIL METHOD

The modal bending moment, for unity nose displacement in feet, about
point x generated by the force per unit dimensionless length, F(x), acting
over the dimensionless length (/zi) is given by

M5t = ST ), FeD (o) Aay 1)

i
The force per unit dimensionless length F(xj) for mode n is given by

Fn(z]’_’t) = m(Zi) Lz yn(ziat) (K"Z)
From Eq. (11)
¥n(zi:t) = anp(zy) 7n(t) (11)

Since 7,(t) is sinusoidal, the second time derivative of y(x4i,t) can be
written

'};n(zj_’t) = 'mnz an(zi) 7n(t) (K-3)

Substituting Eq. (K-3) into (K-2) and Eq. (K-2) into (K-1) yields
2 2

Mp(x,t) _ %n u -
ya(0;0)L y (0,008 ) ™D o2 anley) yale) B2 e
From Eq. (11), this can belwritten
2.3
w_“1L ‘
Mp(x) - o~ J[x m(z) (x-z) ap(z) dz (113)
¥alOL o (o)L JO

for all values of t.

Evaluation of Eq. (113) by the computer program presented in this appendix
will yield the modal bending moments for unity nose deflection in feet, at
each vehicle segment. The inputs required are defined and listed in their
proper input order in the definition section of this appendix. The input bend-
ing modes, AL(K), are not those normalized by the methods presented in Appendix
F. They must have unity displacement at the nose. The output is given for
each vehicle segment and each mode.

This program must be used in conjunction with the interpolation subrou-
tine described in Appendix G.
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Definitions

A.

B.

Inputs (must be in this order)

1. Single input

*IM

*%DX

**X1
*EXF

**ALP1

2, Multiple inputs
**PM(K)
**PX(K)
**EI(K)

H*EX(K)

**%ALP (K)

**AX (K)

Internal Definitions

KB1

Month

Day

Year

Length of mass table

Length of bending stiffness table
Length of bending mode table
Length of the vehicle in inches
Integration interval

Natural frequency

Initial vehicle station

Final vehicle station

Normalized derivative at initial vehicle station
of the bendine mode

Mass as a function of vehicle station
Vehicle stations corresponding to the above mass
Bending stiffness as a function of vehicle station

Vehicle station corresponding to the above bending
stiffness

Normalized bending mode as a function of vehicle
station

Vehicle station corresponding to the above nor-
malized bending mode

Beginning of the mass table
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l"
®
I
i
i
i
-
i
i
1
i
i
|
i
i
i
|
i

KB3

KF3

PA

PC

PD

EEI

AALP

ALPA

End of the mass table

Beginning of the bending stiffness table

End of the bending stiffness table

Beginning of the normalized mode table

End of the normalized

Previous

Previous

Previous

Previous

Previous

Previous

Previous

[ D
vaiae <o

value

value

value

value

value

value

-~
L

of

of

of

of

of

of

the

the

the

the

the

the

the

mode table
integral A
integral B
integral C
integral D
mass

bending mode

bending stiffness

Vehicle station for each increment

Mass at a particular vehicle statiom

Bending stiffness at a particular vehicle station

Bending mode value at a particular vehicle station

Integral A

Integral B

Integral C

Integral D

Calculated bending mode

*Single card inputs with the last digit in column 5

**Multiple inputs and or multiple card inputs with a 12-columm width

(i.e., Format (6E12.4))
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DIMENSION PM(100)sPXC(100)E1(100)9EX(100)9ALP(100)9AX(100)
READ 100,1iM

READ 100yiD

READ 100s1Y

READ 100sKM

READ 100,Kt

READ 100sKA

READ 102,TL

READ 102,0X

READ 102sWN

READ 102sX]

READ 102, XF

READ 102,ALPH

KBis1

KFisKM

KB2=KM+]1

KF2sKF14KE

KB3sKF2+1

KF3sKF24KA

READ 102,(PM(K)sKsKBL1sKFL)

READ 1025(PX(K)sK=KBL1sKF1)

READ 1025(EI(K)pK=KB2oKF2)
READ 102,(EX(K)sK=KB2eKF2)
READ 1029 (ALP(K)sK=*KB3IgKF3)
READ 1029 (AX(K) 9o K=KBE39KF3)
PRINT 1049 IMsIDy1Y

PRINT 107

PRINT 1035 (PM(K)sPX(K)9KsKsKBL1gKkF1)
PRINT108

PRINT 1035 (EJ(K)9EX(K) o KoKaKp2oKF2)
PRINT109

PRINT 103s(ALP(K)sAX(K)sKsK*KEIsKF3)
PRINT 105,KMyKEsKA

PRINT 106sDXsTLoWNsX1isXF

PA=0,

PB‘O.

PC=2Qe.

PD=0.

PMP=0,

AAP'O.

PEl=1,

XsX1

PRINT111

CALL INT (KBisKt1sXgPXoPMyPNMN)
CALL INT(KB2sKF2eXstXsELpktEl)
CALL INT(rB3IsKF3I3XsAXsALPSAALP)
As (PMMsAALP+PMPsAAP )esuX/2.+PA
8= (A+PA)sDX/2.+PB
Cr(B/EE1+PB/PEl1)s(WNes*2)es((TL/12s)sek)eUX/2.4PC
D2 (C+PC)eDX/2.+PD
ALPASALP(KB3)+X*ALP1+4D
PRINT1129XsAsBosALPASCsU»AALP
PMPsPMM

AAP= AALP

PEI=EEI

PAsA

PBsB
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PCs(C

PDs=D
XsX+.0001
IF(X=-XF)2958s5
2 X=:X=-.0001
X X+DX
XsX+.0001
IF(X=XF)393590
35 X:X-+0001
GO 70 1
b XsX-,0001
XsX=DX
DX=XF=X
XsxF
GO T0 1
5 STOP
100 FORMAT(I5)
102 FORMAT(6E12+4)
103 FORMAT(2E14e551Y)
104 FORMAT(1HOS6HDATE 91291H=9i2s1H=512)
105 FURMAT(1HO97X2HKMy 8X2HKE 9 8X2HKA//3110)
106 FORMAT(1HO»7X2HDX 98X 2HTLYOX2HWNsBX20XT 9 8X2HXF//5X95F10e5)
107 FURMAT(O6X4HMASSs7X9HX STATIONs10X1HK)
108 FURMAT(1H1 94 XOHSTIFFNESSsSX9HX STATIONs10X1HK)
109 FORMAT(1H1obXMHALPAS8X9rX STATIONs10X1HK)
111 FORMAT(1H198X1HX912X1HAS13X1HB 9 IXLHALPA/22X1HC 91 3X1HU I OXIHALP/ /)
112 FORMAT(WEL1L5/1X93EL1ke577)
END
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